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We find a surprising connection between asymptotically flat spacetimes and nonrelativistic conformal

systems in one lower dimension. The Bondi-Metzner-Sachs (BMS) group is the group of asymptotic

isometries of flat Minkowski space at null infinity. This is known to be infinite dimensional in three and

four dimensions. We show that the BMS algebra in 3 dimensions is the same as the 2D Galilean conformal

algebra (GCA) which is of relevance to nonrelativistic conformal symmetries. We further justify our

proposal by looking at a Penrose limit on a radially infalling null ray inspired by nonrelativistic scaling

and obtain a flat metric. The BMS4 algebra is also discussed and found to be the same as another class of

GCA, called semi-GCA, in three dimensions. We propose a general BMS-GCA correspondence. Some

consequences are discussed.
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Introduction.—Holography in asymptotically anti–de
Sitter spaces has been the cynosure of attention for over a
decade, following the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [1]. Somewhat less studied and
even lesser understood is holography in asymptotically flat
spacetimes [2]. One of the approaches to this has been to
consider the Bondi-Metzner-Sachs (BMS) group. In the
absence of gravity, the isometry group of the spacetime is
the well-known Poincaré group which is the semidirect
product of translations and Lorentz transformations. The
situation, however, changes drastically when gravity is
turned on, even for weak gravitational fields. When one
looks at four-dimensional asymptotically flat metrics, the
isometry group of the background metric is enhanced to an
infinite dimensional asymptotic symmetry group at null
infinity. This is the BMS group [3]. This consists of the
semidirect product of the global conformal group of the unit
2-sphere and the infinite dimensional ‘‘supertranslations’’.
There is a further enhancement to two copies of the center-
less Virasoro or theWitt algebra times the supertranslations
if one does not require the transformations generated to be
well defined [4]. In three dimensions bms3 is again infinite
dimensional and nowhas one copy of theWitt algebra along
with the supertranslations [5]. These correspond to the null
boundary of the three dimensional spacetime which is
S1 � R. Let us recover the BMS group from the symmetries
of flat spacetime. To find the asymptotic symmetries we
would need to look at the structure at null infinity. Let us
begin by introducing the retarded time u ¼ t� r, the lumi-
nosity distance r and angles �A on the n� 2 sphere
by x1 ¼ r cos�1, xA ¼ r sin�1; . . . sin�A�1 cos�A, for A ¼
2; . . . n� 2, and xn�1 ¼ r sin�1; . . . sin�n�2. The
Minkowski metric is then given by

d�s2 ¼ �du2 � 2dudrþ r2
Xn�2

A¼1

sAðd�AÞ2; (1)

where s1 ¼ 1, sA ¼ sin2�1; . . . sin2�A�1 for 2 � A �
n� 2. The (future) null boundary is defined by r ¼
constant ! 1 with u, �A held fixed. One requires asymp-
totic Killing vectors to satisfy the Killing equation to lead-
ing order. They turn out to be [5]

�u ¼ Tð�AÞ þ u@1Y
1ð�AÞ þOðr0Þ;

�r ¼ �r@1Y
1ð�AÞ þOðrÞ;

�A ¼ YAð�BÞ þOðr0Þ; ðA ¼ 1; . . .n� 2:Þ (2)

where Tð�AÞ is an arbitrary function on the n� 2 sphere,
and YAð�AÞ are the components of the conformal Killing
vectors on the n� 2 sphere. These asymptotic Killing
vectors form a subalgebra of the Lie algebra of vector fields

and the bracket induced by the Lie bracket �̂ ¼ ½�; �0� is
determined by

T̂ ¼ YA@AT
0 þ T@1Y

01 � Y0A@AT � T0@1Y1;

ŶA ¼ YB@BY
0A � Y0B@BYA: (3)

The asymptotic Killing vectors with T ¼ 0 ¼ YA form an
Abelian subalgebra in the algebra of asymptotic Killing
vectors. The quotient algebra is defined to be bmsn. It is
the semidirect sum of the conformal Killing vectors YA of
Euclideann� 2 dimensional spacewith anAbelian ideal of
so-called infinitesimal supertranslations. In three dimen-
sions, the conformal Killing equation on the circle imposes
no restrictions on the function Yð�Þ. Therefore, bms3 is
characterized by 2 arbitrary functions Tð�Þ, Yð�Þ on the
circle. These functions can be Fourier analyzed by defining
Pn � �½T ¼ expðin�Þ; Y ¼ 0� and Jn ¼ �½T ¼ 0; Y ¼
expðin�Þ�. In terms of these generators, the commutation
relations of bms3 become (we drop all factors of i)

½Jm; Jn� ¼ ðm� nÞJmþn; ½Pm; Pn� ¼ 0;

½Jm; Pn� ¼ ðm� nÞPmþn:
(4)
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The Galilean conformal algebra (GCA) on the other
hand, has been discussed in literature in connection with
a nonrelativistic limit of the AdS/CFT conjecture [6]. It
was obtained by a parametric contraction of the finite
conformal algebra (see for example Refs. [6,7]) and was
observed to have an infinite dimensional lift for all space-
time dimensions [6]. The 2 and 3 point correlation func-
tions of the GCA were found [8]. However, in two
spacetime dimensions, as is well known, the situation is
special. The relativistic conformal algebra is infinite di-
mensional and consists of two copies of the Virasoro
algebra. One expects this to be also related, now to the
infinite dimensional GCA algebra. In two dimensions the
nontrivial generators are the Ln and the Mn:

Ln ¼ �ðnþ 1Þtnx@x � tnþ1@t; Mn ¼ tnþ1@x; (5)

which obey

½Lm; Ln� ¼ ðm� nÞLmþn; ½Mm;Mn� ¼ 0;

½Lm;Mn� ¼ ðm� nÞMmþn: (6)

The generators in (5) arise precisely from a nonrelativistic
contraction of the two copies of the Virasoro algebra of the
relativistic theory. The nonrelativistic contraction consists
of taking the scaling

t ! t; x ! �x; (7)

with � ! 0. This is equivalent to taking the velocities
v� � to zero (in units where c ¼ 1). Consider the vector
fields which generate (two copies of) the Witt algebra in
two dimensions:

L n ¼ �znþ1@z;
�Ln ¼ ��znþ1@�z: (8)

In terms of space and time coordinates, z ¼ tþ x, �z ¼
t� x. Hence @z ¼ 1

2 ð@t þ @xÞ and @ �z ¼ 1
2 ð@t � @xÞ.

Expressing Ln,
�Ln in terms of t, x and taking the above

scaling (7) (� ! 0) reveals:

Ln þ �Ln ¼ �tnþ1@t � ðnþ 1Þtnx@x þOð�2Þ ! Ln;

Ln � �Ln ¼ � 1

�
tnþ1@x þOð�Þ ! � 1

�
Mn: (9)

Thus the GCA in 2d arises as the nonrelativistic limit of the
relativistic algebra.

The bms3-gca2 correspondence.—From (4) and (6), it is
obvious that the algebras bms3 and gca2 are isomorphic
with the trivial identifications Ln $ Jn, Mn $ Pn. So,
what we have is a holographic correspondence between
an asymptotic three-dimensional flat spacetime and a two-
dimensional nonrelativistic conformal field theory. There
have been some different forms of realizations of the bulk
theory which has the GCA as its boundary algebra.
Originally in Ref. [6], we proposed the dual gravity theory
to be a Newton-Cartan–like AdS2 � Rd by taking a similar
nonrelativistic limit on the bulk anti–de Sitter space. So,
for the case of AdS3, which is the focal point of our
attention now, the theory in the bulk was a AdS2 � R
Newton-Cartan. The Ln’s turned out to be the asymptotic
symmetries in the sense of Brown and Henneaux [9].

(The Mn’s were trivial isometries of the base AdS2 and
hence did not have any Brown-Henneaux–like interpreta-
tion.) It has also been observed that the GCA emerges as
the asymptotic symmetry algebra of cosmological topo-
logically massive gravity in three dimensions when the
coefficient of the gravitational Chern-Simons term is
made very large [10]. This realization of the GCA in the
bulk allows for an asymmetry which is required in the
central charges of the quantum GCA. The new gravity
description in terms of the BMS algebra gives a third and
possibly the most intriguing occurrence of the GCA. Some
might argue that in order to really have this correspon-
dence, we would need a concrete realization of the bound-
ary theory. To answer this question it is to be noted that the
infinite 2d GCA also makes its appearance in nonequilib-
rium statistical mechanical systems [11]. So, there is a
candidate for the CFT which satisfies the requirements of
the symmetry and it is possible that this could be a real-
ization of the BMS-GCA correspondence.
The Euler equation in nonrelativistic hydrodynamics

emerges in situations when the viscosity of the fluid is
negligible. In Ref. [6], it was noted that the finite dimen-
sional GCA is the symmetry algebra of the Euler equa-
tions. In fact, it is interesting that all the Mn’s (for any n)
are also symmetries of the equations [6,12]. In the intro-
duction, we had remarked that in four dimensions, if the
BMS group is not extended to include all conformal trans-
formations, then it consists of the semidirect product of the
global conformal group in two dimensions and the super-
translations. The situation is similar in three dimensions.
We can look at the ‘‘restricted’’ BMS algebra, with only the
global part of the conformal transformations included. This
contains Lf0;�1g together with all the Mn’s. So, yet another

curious observation of the BMS-GCA correspondence is
that the features of the restricted BMS group in 3 dimen-
sions is encoded in the symmetries of the Euler equations
in 1þ 1 dimensions.
Let us also briefly comment on the central charges on

both sides of this correspondence. A more detailed dis-
cussion of this can be found in [13] which is an extended
version of this Letter. The quantum mechanical 2D GCA
allows two types of Virasoro-like central charges C1, C2

for the [L, L] and [L, M] commutators [14]. The gravity
calculations in Ref. [5] and the BMS-GCA correspondence
implies that in this context C1 ¼ 0 and C2 ¼ 1=4G. These
can also be motivated by a limit from AdS3 [13].
A BMN route to BMS.—In Ref. [6], we proposed a

gravity dual of the GCA by taking a parametric limit of
the bulk AdSdþ2 geometry. Consider the metric of AdSdþ2

in Poincaré coordinates

ds2 ¼ 1

z02
ðdt02 � dz02 � dx2i Þ: (10)

The nonrelativistic scaling limit that was considered was

t0; z0 ! t0; z0 xi ! �xi: (11)

The scalings of t and xi were motivated by the boundary
scaling. The radial direction of the AdSdþ2 is an additional
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dimension.We fix its scaling by remembering that it is
a measure of the energy scales in the boundary theory
via the usual holographic correspondence and should scale
like time, i.e., as �0. So, in the bulk the time and radial
directions both survive the scaling and constitute an AdS2
sitting inside the original AdSdþ2. The GCAwas shown to
emerge by taking this limit on the Killing vectors of
AdSdþ2. Let us suggest a different bulk realization of the
GCA relevant to the asymptotically flat spaces as opposed
to the Newton-Cartan structure proposed in Ref. [6].

Let us concentrate on AdS3. We will now reintroduce
factors of the AdS radius R. We would take a Penrose limit
of the AdS metric in the co-ordinates stated above. (This
was obtained in collaboration with Rajesh Gopakumar.)
The Poincaré patch has a horizon at z0 ¼ 1 and to extend
the coordinates beyond this we will choose to follow an
infalling null geodesic, in an analogue of the Eddington-
Finkelstein coordinates. Therefore define z ¼ z0 and t ¼
t0 þ z0. In these coordinates, with the radius included the
bulk metric reads:

ds2 ¼ R2

z2
½�dtð2dz� dtÞ � dx2� (12)

This will give a nondegenerate metric only if we have the
scaling

x ¼ �

R
x; t; z�Oð1Þ; t� 2z ¼ �2

R2
v (13)

with R ! 1 and keeping �, v, xi, t finite. The resulting
metric is

ds2 ¼ 4�2

t2
ðdtdv� dx2Þ (14)

where we have kept the leading order terms as R ! 1.
(Notice z2 ¼ t2 þOðR�2Þ and hence the replacement.)
This is like a BMN limit [15] where we are zooming into
the vicinity of the null radial geodesic. Note that t� 2z ¼
t0 � z0 in terms of the original Poincaré coordinates that we
started out with.

However, this metric is actually flat. This can be seen by
writing x ¼ t�. This gives the metric

ds2

4�2
¼ dz

t2
ðdv� �2dt� 2�td�Þ � d�2

¼ �d

�
1

t

�
dðv� �2tÞ � d�2: (15)

which we see is clearly a flat metric on R2;1 when we define
~u ¼ 1

t and ~v ¼ v� �2t. We have kept only the leading

terms in the above computation. The above computation
shows that by taking a nonrelativistic limit (13) which is
almost exactly like (11), with an additional condition on
t� z, we can recover a flat space. It was shown in Ref. [6],
that the Killing vectors of AdS in the limit (11) give rise to
an infinite algebra in the bulk which precisely reduces to
the GCA on the boundary and satisfy the same commuta-
tion relations in the bulk. Given the connection between
bms3 and gca2, it is satisfying that one has been able to
recover a flat space metric using the same limit. In terms of

the AdS3=CFT2 correspondence, the above mentioned
BMS3-GCA2 is thus a limit where on the gravity side
one takes the radius of AdS to infinity while on the field
theory side, one takes the speed of light to infinity. So, this
seems to indicate an equivalence between the radius of
AdS and the speed of light in the CFT.
The bms4-gca

s¼1
3 correspondence.—The BMS group

in 4 dimensions: The structure of the BMS group in four
dimensions as before is dictated by the structure at null
infinity, which is now S2 � R times the supertranslations.
As in the case of the three-dimensional BMS group, if one
does not want to restrict to globally well-defined trans-
formations on the two-sphere, we get two copies of the
Witt algebra. The general solution to the conformal Killing

equations is Y� ¼ Yð�Þ, Y �� ¼ �Yð ��Þ, with Y and �Y indepen-
dent functions of their arguments. Their standard basis
vectors and the generators of the supertranslations:

ln ¼ ��nþ1 @

@�
; �ln ¼ � ��nþ1 @

@ ��
; n 2 Z

Tm;n ¼ P�1�m ��n; m; n 2 Z: ½Pð�; ��Þ ¼ 1

2
ð1þ � ��Þ�:

In terms of the basis vector ll � ðll; 0Þ and Tmn ¼ ð0; TmnÞ,
the commutation relations for the complexified bms4 al-
gebra read

½lm; ln� ¼ ðm� nÞlmþn; ½�lm; �ln� ¼ ðm� nÞ�lmþn

½ll; Tm;n� ¼
�
lþ 1

2
�m

�
Tmþl;n

½�ll; Tm;n� ¼
�
lþ 1

2
� n

�
Tm;nþl: (16)

Two copies of the Witt algebra indicate that we would need
to look beyond usual GCAs in any dimensions as the field
theory realizations of this symmetry.
Semi-Galilean conformal algebras: In order to find a

field theoretic description of the above symmetry, in this
section we study nonrelativistic limit of relativistic confor-
mal algebra in dþ 1 dimensions by making use of a
general contraction.

t ! t; y� ! y�; xi ! �xi; (17)

where � ¼ 1; . . . s and i ¼ sþ 1; . . . d. The contraction is
defined by the above scaling in the limit of � ! 0.
We start from a CFT in dþ 1 dimensions. The GCAwas

a specific example of the semi-GCAwith s ¼ 0. We label
semi-GCAs by gcasn. (In our notation, GCA is gcas¼0.) Let
us consider the case of s ¼ 1, d ¼ 2. As in the s ¼ 0 case,
there is a finite algebra which is obtained by contraction
and then this can be given an infinite dimensional lift. It is
useful to define new coordinates u ¼ tþ y, v ¼ t� y.
The infinite generators are [16]

Ln ¼ unþ1@u þ nþ 1

2
unx@x; Mrs ¼ �urvs@x:

�Ln ¼ vnþ1@v þ nþ 1

2
vnx@x: (18)
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One finds an infinite dimensional algebra as follows

½Ln; Lm� ¼ ðn�mÞLnþm; ½ �Ln; �Lm� ¼ ðn�mÞ �Lnþm;

½Ln;Mml� ¼ f½ðnþ 1Þ=2� �mgMðnþmÞl;

½ �Ln;Mml� ¼ f½ðnþ 1Þ=2� � lgMmðnþlÞ: (19)

It is straight forward to observe that this algebra which
we call gcas¼1

3 is isomorphic to (16). The dimension of the

field theory is three and the coordinates are t, y, x, viz., one
of each kind mentioned above.

Remarks on a general correspondence.—The BMS al-
gebra is infinite dimensional in 3 and 4 dimensions as the
group of isometries of the circle and the spheres are
enhanced to the full conformal algebra. Even in the case
of the GCA and its cousin, called the semi-GCAwith s ¼ 1
we have seen similar enhancements. For s ¼ 2 and beyond,
we do not get this enhancement. A way of understanding
this fact is to remember the gravity description in terms of
the Newton-Cartan structure, as defined in Ref. [6]. The
GCA had a bulk piece with an AdS2 and the s ¼ 1 GCA
had a similar AdS3 counterpart. The higher sGCA would
have AdS2þs factors in the Newton-Cartan structure, but
these would not have enhanced Virasoro-like symmetries.
This suggests a general BMS3þs-sGCA2þs correspon-
dence. We should keep one nonrelativistic direction in
the conformal field theory that is dual to the one higher
dimensional BMS group. For example, when we are look-
ing at the BMS algebra in five dimensions, we should look
at a four-dimensional s ¼ 2 GCA. As a limit of an AdS/
CFT correspondence, one should easily be able to obtain
the flat space limit of the respective AdS space by looking
at higher dimensional analogues of the radially infalling
null ray and scaling the coordinates in a manner described
in the 3D case. Now all differences between relativistic
coordinates would scale as R�2. The speed of light in the
nonrelativistic direction of the field theory would be the
dual to the AdS radius in the bulk theory.

Conclusions.—In this note, we have looked at two seem-
ingly unrelated pictures, that of asymptotically flat spaces
and nonrelativistic conformal systems in one lower dimen-
sion and shown that they are equivalent at the level of the
symmetry algebras. We have looked at the structure of the
2D nonrelativistic field theory in some detail in Ref. [14]. It
was found there that most of the answers in the GCA can be
obtained in a spirit very similar to the techniques of 2D
conformal symmetry. Given this correspondence between
flat space and the GCA, it is tempting to ponder on the
consequences of our analysis in Ref. [14] and hope to make
statements about answers on the gravity side. For this, a
first step would be to identify the parameters on both sides.
We had labeled the GCAwith the eigenvalues of boosts and
dilatations in Refs. [8,14]. It would be useful to understand
the relations of these to physical quantities in the asymp-
totically flat spaces. The correlation functions of the GCA
were also computed in Refs. [8,14]. The correlation func-
tions in the field theory would map to on shell amplitudes

in gravity. It is plausible that one would be able to make
statements about the S matrix in asymptotically flat space-
times by using the techniques of the GCA. We are unaware
of any such analysis using the BMS algebra and this is an
avenue definitely worth exploring.
The four-dimensional case, i.e. BMS4-sGCA3 is a case

we have talked less about in this note. This is however the
more interesting map for physical systems because of the
obvious reason that we are talking about asymptotically
flat four-dimensional space. On the field theory side, this is
a case which has been far less studied. One must look at the
representations and in a spirit similar to Ref. [8], one
should be able to construct the Hilbert space and find the
two and three point functions by looking at just the global
part of the algebra. This note is a first step in the direction
of using the nonrelativistic conformal techniques to study
the holography of flat space, which we hope would be a
worthwhile exercise.
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