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We show that the nonequilibrium entropy production for a driven quantum system is larger than the

Bures length, the geometric distance between its actual state and the corresponding equilibrium state. This

universal lower bound generalizes the Clausius inequality to arbitrary nonequilibrium processes beyond

linear response. We further derive a fundamental upper bound for the quantum entropy production rate and

discuss its connection to the Bremermann-Bekenstein bound.
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All real macroscopic processes are irreversible. In ther-
modynamics, irreversibility is quantified by means of the
entropy S: For any state transformation, the variation of
entropy is written as �S ¼ �Sre þ�Sir, where �Sre ¼
Q=T is the entropy change associated with reversible
(equilibrium) processes [1]. The Clausius inequality,
�Sir � 0, on the other hand, provides a fundamental char-
acterization of irreversible (nonequilibrium) phenomena
by specifying a lower bound for the irreversible entropy
change; this lower bound (zero) is trivially independent of
how far from equilibrium a process operates. In many cases
of interest, however, having a sharper, transformation-
dependent lower bound is essential. A case in point is the
optimization of the performance of real thermodynamic
processes that occur in finite time [2,3]. For classical, near-
equilibrium transformations, such a lower bound has been
derived using a geometric approach to thermodynamics
[4]: The infinitesimal irreversible entropy production
is given by the Riemannian distance between initial (equi-
librium) and final (nonequilibrium) states, dSir * d‘2=2
[5–8]; this expression is obtained by a second-order ex-
pansion around equilibrium and is, therefore, restricted to
the linear response regime. The thermodynamic length ‘
measures the number of distinguishable states between
initial and final probability distributions, p0 and p�, and
is identical to Wootters’ statistical distance between wave
vectors (pure states) in Hilbert space [9]; it is explicitly
given by

‘ðp0; p�Þ ¼ arccos

�Z
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ðxÞp�ðxÞ

q �
; (1)

and, hence, measures the angle in state space separating the
two probability distributions p0 and p�.

In this paper, we extend the above results to quantum, far
from equilibrium transformations. Specifically, we gener-
alize the familiar Clausius inequality by deriving a univer-
sal lower bound for the irreversible entropy production
valid for arbitrary quantum processes, using tools from
quantum information theory. We, moreover, show that, in
contrast to classical nonequilibrium physics, there exists a
maximum quantum entropy production rate. Our work is

motivated by recent experiments on driven cold-atom
gases, which, for the first time, allow the direct investiga-
tion of the nonequilibrium dynamics of isolated many-
particle quantum systems beyond the near-equilibrium
linear response regime [10,11]. A precise characterization
of the quantum nonequilibrium entropy production in this
unchartered domain therefore appears necessary. In the
following, we start from a recently derived formula for
the total work done on a closed quantum system [12] to
obtain a microscopic expression for the irreversible en-
tropy production, valid far from equilibrium. We show that
the latter is bounded from below by the Bures length
[13,14], a quantum generalization for mixed states of
Wootters’ statistical distance. The Bures length is closely
related to the quantum fidelity, a central measure of quan-
tum information theory [15]. We further demonstrate that
the quantum entropy production rate � is bounded from
above by a quantity that also depends on the Bures length.
This fundamental limit on the entropy variation rate is of
purely quantum origin and is connected to the energy-time
uncertainty relation. Remarkably, we show that the maxi-
mum rate reduces to the Bremermann-Bekenstein bound
on information flow [16].
Quantum nonequilibrium entropy production.—Let us

consider a closed quantum system, initially in a thermal
state, whose Hamiltonian Ht is driven by an external
time-dependent parameter during time �. For a slow, re-
versible transformation, the system remains in thermal
equilibrium at all times. By contrast, for a fast change,
for instance a parameter quench, the system is driven in a
nonequilibrium state. The nonequilibrium entropy varia-
tion associated with such a transformation may be defined
as [17]

�Sir ¼ �hWiri; (2)

where hWiri ¼ hWi ��F is the difference between the
total work hWi done on the system during time � and the
free energy difference�F (the equilibriumwork); as usual,
� ¼ 1=ðkTÞ denotes the inverse temperature. The irrevers-
ible work hWiri vanishes for a reversible process and is
defined even if the final state of the system is arbitrarily far
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from equilibrium. The probability distribution of quantum
work is given by the difference E�

m � E0
n of final- and

initial-system energy eigenvalues, averaged over all initial
states [thermal distribution p0

n ¼ expð��E0
nÞ=Z0] and

final states (transition probabilities p�
m;n) [12],

P ðWÞ ¼ X
m;n

�ðW � ðE�
m � E0

nÞÞp�
m;np

0
n: (3)

An experimental scheme to measure P ðWÞ in a modulated
cold ion trap has been proposed in Ref. [18]. Equation (3)
can be used to show that the entropy production satis-
fies the fluctuation relation hexpð��SirÞi ¼ 1 [12,17].
According to Eq. (3), the mean work is simply hWi ¼P

m;nðE�
m � E0

nÞp�
m;np

0
n. By introducing the equilibrium

density operator at the final time �, �
eq
� ¼ expð��H�Þ=Z�

with eigenvalues p�
m, we can write

hWi ¼ 1=�
X
n

p0
n lnp

0
n � 1=�

X
m;n

p0
np

�
m;n lnp

�
m

� 1=� lnðZ�=Z0Þ: (4)

The last term on the right-hand side is equal to �F, while
the first two are ð1=�Þ times the quantum Kullback-Leibler
divergence Sð�� k �

eq
� Þ, or quantum relative entropy [19],

between the actual density operator of the system �� at time
� and the corresponding equilibrium density operator �eq

� .
Using Eq. (2), we therefore obtain

�Sir ¼ Sð�� k �eq
� Þ ¼ trf�� ln�� � �� ln�

eq
� g: (5)

This is an exact expression for the nonequilibrium entropy
production and a quantum generalization of recent results
presented in Refs. [20,21] (see also Ref. [22]). We note,
however, that the relative entropy is not a true metric, as it is
not symmetric and does not satisfy the triangle inequality; it
therefore cannot be used as a proper quantum distance [23].
Furthermore, Eq. (5) is, in general, difficult to determine
explicitly. We next derive a lower bound for the quantum
entropy production which we express in terms of the fidelity,
one of the most commonly used and well-studied measures
in quantum information theory [15].

Generalized quantum Clausius inequality.—Inequalities
are essential tools of classical and quantum information
theory [23]; they allow us to express ‘‘impossibilities,’’
things that cannot happen, and relate hitherto unconnected
quantities. An elementary example is Klein’s inequality,
Sð�1 k �2Þ � 0, which asserts the non-negativity of the
quantum relative entropy [15]. Combined with Eq. (5), it
immediately leads to the usual Clausius inequality. We
shall establish a generalized Clausius inequality by proving
that the irreversible entropy variation is always larger
than the Bures length [13,14]. The Bures metric formally
quantifies the infinitesimal distance between two density
operators as L2ð�þ ��; �Þ ¼ trf��Gg=2, where G obeys
�GþG� ¼ ��. Thermodynamic distances should be
physically motivated and, to some degree, unique [4].
Wootters’ statistical distance, being equal to the angle in
Hilbert space, is the only Riemannian metric (up to a

constant factor) which is invariant under all unitary trans-
formations [9]; it is hence a natural metric on the space of
pure states. The Bures metric, on the other hand, is the
generalization of Wootters’ metric to mixed states [24];
in this sense it represents a natural, unitarily invariant
Riemannian metric on the space of impure density matrices
[25]. For any two density operators the finite Bures length
L is given by

L ð�1; �2Þ ¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�1; �2Þ

q
; (6)

where the fidelity F is defined for an arbitrary pair of mixed
quantum states as [26,27]

Fð�1; �2Þ ¼ ½trf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

p
�2

ffiffiffiffiffiffi
�1

pq
g�2: (7)

The fidelity is a symmetric, non-negative, unitarily invari-
ant function, which is equal to 1 only when the two states
are identical. For pure quantum states, �i ¼ jc iihc ij, the
fidelity reduces to their overlap, Fð�1; �2Þ ¼ trf�1�2g ¼
jhc 1jc 2ij2. It has recently been shown that if dð�1; �2Þ is a
unitarily invariant norm, then the quantum relative entropy
satisfies (Ref. [28], Th. 4)

Sð�1 k �2Þ � 2
d2ð�1; �2Þ
d2ðe1;1; e2;2Þ ; (8)

where ei;j is the matrix with the i, j element equal to 1 and
all other elements 0. Noting thatLðe1;1; e2;2Þ ¼ �=2, since
the two matrices are orthogonal [Fðe1;1; e2;2Þ ¼ 0], we
obtain the generalized Clausius inequality,

�Sir � 8

�2
L2ð��; �

eq
� Þ: (9)

The quantum entropy production �Sir is hence bounded
from below by the geometric distance between the actual
density operator �� at the end of the process and the
corresponding equilibrium operator �

eq
� , as measured by

the Bures length; the latter defines a quantum generaliza-
tion of the concept of thermodynamic length [5–8] and
provides a natural scale to compare �Sir with. In other
words, inequality (9) quantifies in a precise way the in-
tuitive notion that the irreversible entropy production is
larger when a system is driven farther away from equilib-
rium. Expression (8) shows that �Sir is bounded by many
distances; however, only the Bures length has a simple
physical interpretation. Equation (9) is valid for arbitrary
quantum processes, including far-from-equilibrium final
states. For infinitesimally close diagonal states, we have
Sð� k �þ d�Þ ’ 2L2ð� k �þ d�Þ ’ d‘2ð� k �þ d�Þ=2.
In the limit of classical, quasiequilibrium transformations,
Eq. (9) thus reduces to dSir � 2=�2d‘2.
A simple illustration of the generalized Clausius in-

equality (9) is provided by a time-dependent quantum
harmonic oscillator, initially at thermal equilibrium,

Ht ¼ p2

2m
þ 1

2
m!2

t x
2; (10)
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and whose angular frequency is varied from !0 to !1

according to !2
t ¼!2

0þð!2
1�!2

0Þt=� (cf. Fig. 1) [29].

This quantum system is exactly solvable, and both the
entropy production and the Bures length can be evaluated
explicitly [30]. The distance from equilibrium is controlled
here by the ratio !1=!0 between final and initial frequen-
cies. We observe that the relation dSir’d‘2=2 is valid
close to equilibrium, !1=!0 ’ 1, whereas the generalized
Clausius inequality (9) holds for all values of!1. It is worth
noting that for very large !1, initial and final states become
maximally distinguishable, i.e., orthogonal, and the Bures
length (6) approaches�=2. For the parameters of Fig. 1, this
very-far-from-equilibrium regime is reached when the en-
ergy of the oscillator is increased bymore than a factor of 20.
A quantitative estimate of the energy change associated with
a given irreversible entropy production will be given below.

Quantum entropy production rate.—Nonequilibrium
irreversible phenomena are not only characterized by the
irreversible entropy change, but also by the rate of entropy
production � ¼ �Sir=�. The entropy rate � is a central
quantity that is associated with the speed of evolution of a
nonequilibrium process [1]. In quantum mechanics, the
energy of a system imposes a fundamental constraint on
its unitary time evolution, as captured, for instance, by the
time-energy uncertainty relation t � @=�E: the minimal
time it takes for a quantum system to evolve to an orthogo-
nal state is always larger than the inverse of its initial energy
spread �E. A more accurate expression for the ‘‘quantum
speed limit’’ has been derived in Ref. [31] for time-
independent Hamiltonians. Consider a system initially in
state �0 with mean energy E0 ¼ hH0i and energy spread

�E0 ¼ ðhH2
0i � hH0i2Þ1=2. The minimum time required for

the evolution to an arbitrary state �� is then given by

�min ’ max

�
2@L2ð��; �0Þ

�E0

;
@Lð��; �0Þ

�E0

�
; (11)

whereLð��; �0Þ is the Bures length (6) between �� and �0.
The quantum speed limit time is thus entirely determined by

the initial energy (mean or variance) and the geometric
distance between initial and final states. We will now
show that Eq. (11) sets an upper bound to the entropy
production rate. We begin by rewriting Eq. (1) in the form
�Sir ¼ �jhH�i � hH0i � F� þ F0j, since �Sir � 0, and
focus on the limit of large excitations, hH�i � hH0i, which
is achieved for long enough driving. By applying the tri-
angle inequality and noting, from Eq. (2), that�F � hWi ¼
hH�i � hH0i, we obtain
�Sir � �ðhH�i þ hH0i þ �FÞ � 2�ðhH�i þ hH0iÞ

’ 2�hH�i: (12)

By combining Eqs. (11) and (12), we find that the maximum
entropy production rate �max ¼ �Sir;max=�min is

�max ’ 2�hH�imin

�
�E0

2@L2ð��; �0Þ
;

�E0

@Lð��; �0Þ
�
: (13)

The above equation expresses the inherent quantum-
mechanical limit to the entropy production rate. Equation
(13) simplifies in the limit of far-from-equilibrium trans-
formations, when initial and final states become orthogonal,
Lð��; �0Þ ’ �=2, and of high temperatures, E0 ’ 1=�

(�E0 ’ E0=
ffiffiffiffi
N

p � E0, for N degrees of freedom), to the
Bremermann-Bekenstein bound [16],

� � 4

@�
hH�i: (14)

The Bremermann-Bekenstein bound gives the maximum
quantum communication rate (capacity) that is possible
through a noiseless single channel with signals of finite
duration.We stress that the present derivation is solely based
on the thermodynamic definition of the entropy production
(2) and does not make any reference to information entropy
or channels; it is thus free of the caveats of the original
derivations, such as the use of the periodic boundary con-
dition approximation [32].
The quantum speed limit time (11), and hence the en-

tropy production rate (13), only holds for slowly driven
systems (i.e. quasiequilibrium processes), as Eq. (11)
assumes a time-independent Hamiltonian. For arbitrary
nonequilibrium transformations, Eq. (11) can be extended
using the geometric approach of Ref. [33]. By evaluating
the time derivative of the angle between the initial and final
states, Lð��; �0Þ, we find that the exact quantum speed
limit for time-dependent Hamiltonians is

�min ¼ max

�
@Lð��; �0Þ

E�

;
@Lð��; �0Þ

�E�

�
: (15)

The minimum time is determined here by the time aver-

aged mean and variance, E� ¼ ð1=�ÞR�
0 dthHti and�E� ¼

ð1=�ÞR�
0 dtðhH2

t i � hHti2Þ1=2, of the energy and not by their
initial values [34]. As a consequence, the quantum speed
limit time for driven systems can be smaller than for
undriven systems when E� > E0 (�E� > �E0). This is,
for instance, the case at zero temperature: According to

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1
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FIG. 1 (color online). Illustration of the generalized Clausius
inequality (9) for the quantum harmonic oscillator (10) with
linearly varying frequency. We show the entropy production �Sir
(red, dashed line) and the lower bound 8=�2L2ð��; �

eq
� Þ (blue,

solid line) as a function of the final frequency !1 for @ ¼ � ¼
� ¼ 1 and !0 ¼ 0:1.
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Eq. (11), a quantum system never leaves an initial (non-
degenerate) pure state (infinite �min) in the absence of
driving, while Eq. (13) predicts a finite �min for a driven
Hamiltonian. Figure 2 shows that for the time-dependent
oscillator (10) at zero temperature, the actual driving time
� can approach the absolute minimum evolution time �min

within a factor of 2, for a simple linear change of its
angular frequency.

The general expression for the maximum entropy pro-
duction rate � for nonequilibrium quantum processes can
eventually be obtained by combining Eqs. (11) and (15); it
should be regarded as the extension of the Bremermann-
Bekenstein bound (14) to arbitrary distances between
initial and final states, arbitrary initial temperature, and
arbitrary transformation speed. Written in the form

hHti
�Sir

� 2�

�
min

�
E�

@Lð��; �0Þ ;
�E�

@Lð��; �0Þ
�
; (16)

it provides an estimate for the minimum energy change
occurring with a given entropy variation in a time �.

Conclusion.—We have developed a generic geometric
characterization of far-from-equilibrium quantum pro-
cesses based on the distinguishability metric on the space
of quantum states. We have first obtained a generalized,
more precise form of the Clausius inequality by deriving a
lower bound for the irreversible entropy production given
by the Bures length between the nonequilibrium density
operator of the system and the corresponding equilibrium
operator. We have further established the existence of an
upper bound for the entropy production rate by employing
the notion of quantum speed limit time, which is itself a
function of the Bures length. The latter is an extension of
the Bremermann-Bekenstein bound to arbitrary nonequi-
librium quantum processes.
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FIG. 2 (color online). Quantum speed limit time �min, Eq. (13)
(red, solid line), and actual driving time � (blue, dashed line) for
the linearly parametrized quantum harmonic oscillator (10) with
@ ¼ � ¼ 1, 1=� ¼ 0, and !0 ¼ 0:1.
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