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We study grain-boundary fluctuations in two-dimensional colloidal crystals in real space and time using

video microscopy. The experimentally obtained static and dynamic correlation functions are very well

described by expressions obtained using capillary wave theory. This directly leads to values for the

interfacial stiffness and the interface mobility, the key parameters in curvature-driven grain-boundary

migration. Furthermore, we show that the average grain-boundary position exhibits a one-dimensional

random walk as recently suggested by computer simulations [Z. T. Trautt, M. Upmanyu, and A. Karma,

Science 314, 632 (2006)]. The interface mobility determined from the mean-square displacement of the

average grain-boundary position is in good agreement with values inferred from grain-boundary

fluctuations.
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The physical properties of many materials such as semi-
conductors, metals, and ceramics are determined by their
microstructure, the presence of defects, and the grain size
distribution [1–3]. Defects such as dislocations and grain
boundaries can, for instance, arise due to freezing-in dur-
ing crystal growth or as a result of stress on the crystal. The
presence of different crystallites is particularly important
for the mechanical properties, as the grain size is directly
related to the strength of materials [4,5]. Also, processes
like grain growth, phase transformations, and recrystalli-
zation are heavily influenced by the motion and evolution
of grain boundaries [3,6].

Grain-boundary migration is a direct consequence of the
competition between thermal energy, which causes any
interface to be microscopically rough, and the tendency
to minimize the grain-boundary curvature and surface area.
The kinetics of such curvature-driven interfaces are gov-
erned by two parameters: the grain-boundary stiffness �
and the interface mobilityM. The grain-boundary stiffness
is the sum of the interfacial tension � and the second
derivative of the interfacial tension with respect to the
orientation of the grain boundary €�. The stiffness is well
known to be important in solidification where its orienta-
tion dependence helps control the growth and specific
orientation of dendrites [7]. The grain-boundary mobility
is the proportionality constant that relates the grain-
boundary velocity v to the curvature � and the grain-
boundary stiffness: v ¼ M�� [1]. The grain-boundary
stiffness and mobility are therefore the key parameters
that govern the structure and dynamics of curvature-driven
grain growth.

There are various ways to determine the grain-boundary
stiffness and mobility in experiments [8,9] and simulations
[10–13]. However, especially for the measurement of
the interface mobility, these methods usually require
significant driving forces. Computer simulations have

demonstrated that equilibrium grain-boundary fluctuations
provide an elegant zero-driving force route to both the
grain-boundary stiffness and mobility [7,11]. Grain-
boundary fluctuations can be expressed as a sum of
thermally excited capillary waves [14] where the displace-
ments are represented in reciprocal space as the Fourier
components AðkÞ. From the equipartition theorem it fol-
lows that, in the small slope ( dh

dx � 1) and long wavelength

limit, the equilibrium fluctuation spectrum of a rough
interface is given by [15,16]

hjAðkÞj2i ¼ kBT

L�k2
: (1)

Here, the angular brackets denote a configurational average,
L is the interface length, and kBT is the thermal energy.
It has recently been shown that interface fluctuations

are experimentally very well accessible in colloidal sys-
tems [17,18]. While much of the current experimental
knowledge on grain boundaries has been inferred from
detailed high-resolution transmission electron microscopy
studies [9,19–21], directly accessing the interface fluctua-
tions in atomic grain boundaries is problematic due to the
short time and length scales [22]. So far only computer
simulations have employed capillary fluctuations to extract
the stiffness and mobility of atomic grain boundaries
[11,23–26]. Here, we exploit the increased time and length
scales of a colloidal model system [27–30] to directly
monitor the grain-boundary fluctuations in a colloidal
crystal. Using capillary wave theory, we determine the
grain-boundary stiffness and mobility from the real space
correlations functions. We also determine the grain-
boundary mobility from the diffusive motion of the mean
grain-boundary position, thereby experimentally confirm-
ing this approach suggested by computer simulations [12].
We use colloidal melamine-formaldehyde spheres

with a diameter of 2:7 �m (Microparticles GmbH).
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The particles are dispersed in water and interact through a
short-range screened Coulomb potential. The particles are
contained in a 200 �m thick glass sample cell, and after
sedimentation a two-dimensional hexagonal colloidal
crystal is formed as shown in Fig. 1(a). The number density
in the crystal is 0:11 �m�2. As the particle size is much
greater than the gravitational height, the out-of-plane
fluctuations of the particles are negligible. Using optical
video microscopy long image stacks of colloidal
grain boundaries [Fig. 1(a)] of length L� 200 �m are
recorded at typically 0.5 Hz for several hours. Standard
particle tracking software is used to find the particle coor-
dinates [31].

To find the interface a local orientation parameter �ðiÞ
is assigned to each particle i. To this end, first theN nearest
neighbor coordinates ~rj of every particle i are found

using a Delaunay triangulation. Next, the angle �j ¼
tan�1ð~rj � ~riÞ, with �� � �j � �, subtended from the

central particle i to each of its nearest neighbors j is
obtained. The orientation parameter is then obtained as
�ðiÞ ¼ 1

N

P
j�j. Each frame is subsequently split into

bins of size approximately the particle diameter and per-
pendicular to the interface direction. The local orientation
parameter is then plotted across the interface as shown in
Fig. 1(b). A tangent-hyperbolic fit to this profile gives the
interface position for each bin. As a result, the interface
height h as a function of the distance along the interface x
and time t is then obtained: hðx; tÞ. To analyze the fluctua-
tions, the interface averaged over all frames is subtracted:
h0ðx; tÞ ¼ hðx; tÞ � hhðxÞit.

The grain-boundary fluctuations are analyzed in real
space by constructing the time-dependent height-height
correlation function:

ghðx; tÞ ¼ h½h0ðx0; t0Þ�½h0ðx0 þ x; t0 þ tÞ�i: (2)

The static correlation function ghðxÞ averaged over all
x0 and time t is expressed as ghðx; t ¼ 0Þ ¼ hh0ðx0Þ
h0ðx0 þ xÞi and is shown in Fig. 2(a). The correlation
function shows a rapid monotonic decay and approaches
zero around 20 �m. To extract the grain-boundary stiff-
ness from the static correlation function, we note that
the interface position hðx; tÞ can be expressed as hðx; tÞ ¼P

kAðk; tÞeikx. In other words, Fourier transforming Eq. (1)
yields an expression for ghðxÞ. The sum is converted to an
integral over all k, where we assume that kmin ¼ 0 and
kmax ¼ 1. Note that only the even real part of eikx remains.
To avoid divergence of the integral as k ! 0, a lateral
correlation length � is introduced which ensures a smooth
long wavelength cutoff [32,33]:

ghðxÞ ¼ kBT

��

Z 1

0

1

k2 þ ��2
cosðkxÞdk¼ kBT

2�
�e�x=�: (3)

Figure 2 shows excellent agreement between the experi-
mental data and theory. Fitting Eq. (3) to the experimental
static correlation function gives a grain-boundary stiffness
of 1:7� 10�15 Jm�1 and a correlation length of 4:9 �m.
The fact that L � � confirms that the fluctuation spectrum
is not affected by the finite length of the grain boundary.
For comparison, we also computed the stiffness from
the power spectrum using Eq. (1), plotting hjAðkÞj2i as
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FIG. 1 (color online). (a) An example of a grain boundary in a two-dimensional colloidal crystal of 2:7 �m diameter melamine-
formaldehyde particles. (b) An orientation Voronoi plot corresponding to the image in (a). Each Voronoi cell corresponds to a particle
and its color represents the local orientation of the particle as indicated by the color bar. The two different crystallites and the interface
are easily recognized. Inset: Fitting a tangent hyperbolic to the local orientation as a function of the distance to the interface, the inter-
face is localized for each bin. The complete interface is then found as shown by the solid line in (b).
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a function of 1=k2 as shown in the inset of Fig. 2(a).
The value of 1:8� 10�15 Jm�1 compares very well with
the stiffness obtained using our real space approach.
Alternatively, the function may be approximated to the
one point self-correlation function, the mean-square inter-
face width, as hh2i ¼ ghð0Þ ¼ kBT�=2�. Using a correla-
tion length of 4:9 �m indeed gives a consistent stiffness
of 1:6� 10�15 Jm�1.

The dynamic correlation function is given by ghðx ¼
0; tÞ ¼ hh0ðt0Þh0ðt0 þ tÞi and is shown in Fig. 2(b). Each
Fourier mode decays exponentially according to

hAðk; 0ÞA�ðk; tÞi ¼ hjAðkÞj2ie�M�k2t; (4)

with a decay constant � ¼ 1=M�k2 that depends on both the
grain-boundary stiffness � and the mobility M [13]. Sub-
sequently, substituting Eq. (1) into Eq. (4), Fourier trans-
forming, and converting the sum to an integral results in

ghðtÞ ¼ 2kBT

��

Z 1

0

1

k2 þ ��2
e�M�ðk2þ��2Þtdk

¼ kBT�

�
erfc

�ð�MtÞ1=2
�

�
; (5)

where erfcðtÞ is the complementary error function. Hence,
in contrast to the static correlation function, the dynamic
correlation function directly yields the grain-boundary
stiffness � and the mobility M. Consistently, the one point
self-correlation function reduces to the mean-square
interface width kBT�=2�. Equation (5) describes the ex-
perimental data points accurately, and from the fit a grain-
boundary stiffness and mobility of 4:8� 10�15 Jm�1 and
28 m3=J s are extracted, respectively. Here, we used � ¼
4:9� 10�6 m as found from ghðxÞ. The value for the stiff-
ness is in good agreement with the value obtained from the
static correlation function and the power spectrum.
However, we expect the dynamic method to be more accu-
rate as this is not limited by the length of the interface.

We also determined the mobility from the decay of the
Fourier modes [11]: substituting Eq. (1) into � ¼ 1=M�k2

leads to LhjAðkÞj2i ¼ kBTM�. Subsequently plotting
LhjAðkÞj2i as a function of � [see inset Fig. 2(b)] results in
a mobility of M ¼ 55 m3=J s, which compares well to the
grain-boundarymobility obtained from the dynamic height-
height correlation function.
Recent computer simulations suggested that the grain-

boundary mobility can also be extracted using the
fluctuation-dissipation theorem in the limit of zero-driving
force [12]. The approach is based on the average interface
position �h ¼ 1

L

R
L
0 hðx; tÞdx performing a one-dimensional

(1D) random walk. This is the interface analog of the
Stokes-Einstein relation for 1D diffusion of a Brownian
particle: h �h2i ¼ 2Dt, where the diffusion constantD is dir-
ectly proportional to the grain-boundary mobility M [12],

D ¼ MkBT

L
: (6)

Figure 3(a) shows a typical trajectory of the average inter-
face position �h in time, and a representative probability
distribution corresponding to a time interval of 200 s is
shown in Fig. 3(b). The Gaussian shape of the distribution
confirms that the interface performs a 1D random walk and
is therefore consistent with the method suggested in [12].
The grain-boundary mobility is subsequently extracted
from the time dependence of the mean-square displace-
ment, Fig. 3(b). We find a grain-boundary mobility of
70 m3=J s, which again is in excellent agreement with the
mobility obtained from the dynamic correlation function.
Note that data for times smaller than the Brownian time
(� 10 s) are not taken into account.
Because values for the grain-boundary stiffness and

mobility in colloidal crystals have not been reported to
the best of our knowledge, we discuss our results in the
light of two- and three-dimensional computer simulations
of atomic grain boundaries. Typical stiffnesses reported for
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FIG. 2. (a) The static height-height correlation function ghðxÞ: experimental data (symbols) and a fit (solid line) according to Eq. (3).
The inset shows the power spectrum from which the stiffness is deduced using Eq. (1). (b) The dynamic correlation function ghðtÞ:
experimental data (symbols) and a fit (solid line) according to Eq. (5). The inset shows a plot of the amplitudes of the interface
fluctuations versus their corresponding decay times, from which the mobility is found as explained in the text.
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2D and 3D atomic simulations are of the order of
10�11 J=m [25] and 1 J=m2 [11], respectively. These val-
ues are consistent with the stiffness scaling as �kBT=lc in
2D and �kBT=l

2
c in 3D, where lc is the characteristic

length scale, which for atomic systems is �1 �A.
Applying this to a 2D colloidal system with lc � 1 �m, a
stiffness of �10�15 Jm�1 is expected, which is in very
good agreement with our findings. Similarly, typical mobi-
lities found in 3D atomic simulations (no 2D data avail-
able) range from�10�7 to 10�9 m4=ðJ sÞ [11,12]. This can
be understood usingM� l4c=ðkBTtcÞ, with tc the character-
istic time scale which for atomic systems is �1 ps [12].
In 2D this reduces to M� l3c=ðkBTtcÞ, so that for our
2D colloidal system with tc � 10 s a mobility of
�100 m3=ðJ sÞ is expected. Again, this is in excellent
agreement with the values determined from the dynamic
correlation function and the random walk analysis. This
simple scaling analysis shows the robustness and the ap-
plicability of our real space analysis for the investigation of
grain-boundary fluctuations and the direct measurement of
the grain-boundary stiffness and mobility. We believe that
this approach will also prove very useful in simulation
studies and in further studies addressing the effect of
impurities and confinement on the structure and mobility
of grain boundaries using colloids as a condensed matter
model system.
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FIG. 3. (a) A typical trajectory of the average interface �h
position as a function of time. (b) The probability distribution
of �h for a time interval of 200 s. The solid line is a Gaussian fit to
the distribution. (c) The mean-square displacement of �h as a
function of the time. The solid line is a linear fit to the data (for
times larger than the Brownian time).
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