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We investigate nematic order in vibrated granular rods confined to a small quasi-2D container less than

10 rod lengths in diameter. As rod density � increases, patterning shifts from bipolar to uniform

alignment. We find that a continuum liquid crystal free energy functional captures key patterning features

down to almost the particle size. By fitting theory to experiments, we estimate the relative values of bend

and splay elastic constants and wall anchoring. We find that splay is softer than bend for all � and rod

lengths tested, while the ratio of the average elastic constant to wall anchoring increases with �.
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While mechanically driven granular materials display
many phenomena that highlight their nonequilibrium na-
ture [1], equilibriumlike behavior can be observed under
certain experimental conditions [2]. The analogy between
patterning in granular materials and molecular or colloidal
particles in equilibrium often occurs for entropy driven
transformations, where mechanical agitation samples par-
ticle configurations that result from minimization of steric
interactions [3,4]. For example, granular rods can behave
like liquid crystals (LCs), with an isotropic-nematic tran-
sition that exhibits the expected scaling with rod length to
diameter ratio (L=D) and density [3]. Knowledge of the
LC elastic constants can further develop this analogy. In
molecular LCs, the relative values of these constants
control both static and dynamic material properties,
such as distortions in various geometries [5] or defect
dynamics [6].

Previous methods for measuring elastic constants are
insufficient when applied to materials that are confined to
a small space and consist of relatively few rods, N [7]. In
our experiments (quasi-2D container, diameter <10L),
boundary induced distortions in the nematic phase are
often on the order of L and considered large. We, however,
show that by taking ensemble averages, rod patterning
resembles the field distortions observed in ‘‘larger’’ sys-
tems, such as LC droplets, where molecule size is much
smaller than droplet dimensions. The patterning in such
droplets can be explained by minimizing a free energy
functional, F ¼ F bulk þF wall, that considers both bulk
and boundary rod alignment contributions [8–10].

For LCs, the Frank elastic free energy is commonly used
to describe the energetic penalty for distortions in the bulk
over an area A in two dimensions (2D) [11],

F bulk ¼ 1

2

Z
A
K1ðr � nÞ2 þ K3ðr � nÞ2dxdy; (1)

where nðx; yÞ ¼ ½cos’; sin’� is the unit vector represent-
ing the local nematic director angle ’, and K1, K3 are
constants for splay and bend, respectively. The term for
twist, which contains K2, is not present in 2D.
The form of F wall is determined by boundary geometry

and rod-boundary interactions [8–10]. For simple steric
interactions that favor rod alignment parallel to a hard
immovable wall in 2D, the boundary term over the perime-
ter P can be approximated by

F wall ¼ 1

2
C
Z
P
sin2ð’w � ’Þds; (2)

whereC is a positive constant with units of line tension and
’w describes the vector locally tangent to the wall. By
adjusting K1, K2, and C so that the solution that minimizes
F matches the patterning observed in experiments, the
relative values of the elastic constants and wall-anchoring
strength of a material can be obtained [8].
We now apply a similar approach to measure the elastic

constants and wall anchoring for our small, nonequilibrium
granular system, demonstrating that the equilibrium
description provides a valuable framework. By taking en-
semble averages, we obtain the first quantitative measure-
ments of nematic elastic constants and wall anchoring in
granular materials. We find that, for rod densities and L=D
tested, bend is significantly stiffer than splay. In addition,
the average elastic constant increases relative to wall
anchoring as rod density increases. Together, these three
constants determine rod patterning.
Similar to methods in [3,4], we placed N steel rods

(D ¼ 0:08 cm, L=D ¼ 40 and 60) into a quasi-2D circular
container of area A (radius 15 cm). We focused on rod
densities � above the nematic critical point [3], where
� ¼ L2N=A is the normalized density that controls the
2D LC phase transition. The container was shaken with a
sinusoidal oscillation of 50 Hz and a peak acceleration of
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4 times gravity. Steady state in the rod patterning occurred
in �5 min , and the position and orientation of each rod
were found by an image processing algorithm.

Snapshots of granular rod arrangements in experiments
are shown in Fig. 1, where L=D ¼ 40 and � ¼ 15, (a), and
30, (b). These images highlight different rod patterns that
can occur by changing experimental conditions. At low �,
Fig. 1(a), rod alignment is approximately straight in the
center of the container, or ‘‘bulk,’’ but curves to follow the
hard walls of the boundary. Where rod alignment between
bulk and boundary compete to produce rod orientations
perpendicular to the wall, two diametrically opposed point
defects occur. We call this configuration ‘‘bipolar.’’ In
contrast, the rods in Fig. 1(b) possess nearly uniform align-
ment throughout the entire container, with significant rod-
boundary misalignment.

We will show that, on average, rod patterning resembles
the minimized equilibrium continuum functional F ¼
F bulk þF wall, where the balance between F bulk [Eq. (1)]
andF wall [Eq. (2)] controls spatial variations in the nematic

director. Minimizing F with respect to n yields the follow-
ing Euler-Lagrange equations for the bulk

0 ¼ �@2’

@x2
ð1� � cos2’Þ � @2’

@y2
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and boundary

0 ¼ Kx

�
@’

@x
ð1� � cos2’Þ � @’

@y
� sin2’
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þ Ky
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�@’

@x
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2
sin2ð’w � ’Þ; (4)

where � ¼ ðK1 � K3Þ=ðK1 þ K3Þ is the elastic constant
anisotropy, and K ¼ ðK1 þ K3Þ=2 is the average elastic
constant. As will be discussed, Fig. 1(c) and 1(d) compare
the local orientation n around continuum defects for experi-
ments in Figs. 1(a) and 1(b), respectively (black lines) with
the best fits to Eqs. (3) and (4) (red or gray lines).
As the energetic penalty for deformations in the bulk

increases in comparison to the boundary, rod alignment
changes from the pattern seen in Fig. 1(c) to that of 1(d).
The balance between F bulk and F wall is mediated through
K1,K3, andC [3,8–10]. In addition, anisotropy betweenK1

and K3 modifies the curvature of the distortion lines in rod
patterning [8,10,12]. Conversely, by measuring changes in
the nematic director through space, the values of these
constants can be estimated. Since defects are relatively
easy to locate and naturally provide large spatial variations
in the nematic director, we employ a technique that inves-
tigates patterning around point defects to estimate the
values of the constants [12].
To accurately identify defects in granular experiments,

we define a local orientational order parameter Sðx; y; pÞ ¼
hcos2#iip for all rods locatedwithin a distancep from (x, y),

where#i is the angle of the ith rod with the nematic director
[5]. This yields a quantity that averages over many rods
in an image and is defined for all (x, y). We varied p and
found that a value of p ¼ L allowed easy visualization of
defects without excessive noise in the value of Sðx; y; pÞ.
The shading in Figs. 1(a), 1(b), and 1(e) corresponds to
Sðx; y; p ¼ LÞ, where light to dark indicates high to low
ordering. This method highlights two point defects in Fig. 1
(a) (dark) that are analogous to the equilibrium solution. For
L=D ¼ 40, � ¼ 30 and L=D ¼ 60, � � 25, where nearly
uniform alignment occurs, ‘‘defects’’ were defined by ex-
tending a line, whose orientation matched the bulk nematic
director, from the center of the container to the boundaries.
The continuum model provides a description for two

diametrically opposed defects that are either located at the

FIG. 1 (color online). Rod patterning in a circular container.
For all images, L=D ¼ 40. (a),(b) Snapshots of granular experi-
ments for � ¼ 15 and 30, respectively. Shading indicates local
orientational order, Sðx; y; p ¼ LÞ. (c),(d) Local n around con-
tinuum defects for experiments (black lines) and minimized free
energyF (red or gray lines) for � ¼ 15 and 30, respectively (see
text). Dashed arcs are at 1:5L and 2:0L from defect cores. Bars
show rod length. (e) Snapshot depicts defects dissimilar to the
continuum free energy minimum: line defect (arrow 1), a close
pairing of two point defects (arrows 2,3), shown for � ¼ 15.
(f) Probability density of finding Sðx; y; p ¼ LÞ< 0:2 at a given
location in the container for � ¼ 15 (average of >500 images).
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boundary, Fig. 1(c), or are virtual, ‘‘existing’’ outside the
container, Fig. 1(d). In contrast, fluctuations in rod arrange-
ments for the granular experiments can be significant,
Fig. 1(e), and pattern matching with the continuum solu-
tion should only be expected for ensemble averages rather
than for single instantaneous arrangements. By measuring
the probability density of finding Sðx; y; p ¼ LÞ< 0:2,
Fig. 1(f), we find that, on average, these granular experi-
ments do contain only two diametrically opposed defects.

For the remainder of this manuscript, we focus on
defects that resemble the continuum solution. We find
‘‘isolated’’ point defects, as seen in Figs. 1(a) and 1(e)
(unlabeled defect) and define the center of each of these
defects as the local minimum in Sðx; y; p ¼ LÞ. Figure 2(a)
shows the probability of finding these defects a distance d
from the container wall for L=D ¼ 40 at various �.
Because it is difficult to numerically evaluate Eq. (1)
when the singularities associated with defect cores are
located inside highly confined geometries [13], only de-
fects located at the wall, d < 0:25L, were analyzed.

To characterize the nematic field near defects, we mea-
sured changes in the local director on arcs at distance r
from each defect center, where � is the positional angle and
’ is the local nematic director orientation associated with

Sðx; y; pÞ, see Fig. 2(b). We set the direction normal to
the wall as � ¼ 0 and considered arcs within a band from
r ¼ 1:5L to 2:0L, Figs. 1(c) and 1(d). We excluded arcs
r < 1:5L, since measurements on that scale most likely
reflect individual rod stiffness rather than collective
‘‘nematic’’ behavior. Also, the fits are expected to be valid
only in the vicinity of a defect, r < 2:0L, because we did
not constrain for the presence of a second diametrically
opposed defect in the experiments, while the numeric
solution assumes both poles.
Figure 2(c) indicates ’ versus � at r ¼ 1:75L for all

equilibriumlike defects collected at � ¼ 15 for L=D ¼ 40.
This figure demonstrates large fluctuations in ’ that can
result from small N. Since we are interested in continuum-
like behavior, we averaged these curves. Based on the
symmetry of the solution, measurements from � < 0
were combined with those from � > 0. Figure 2(d) (sym-
bols) shows the average change in ’ with � for L=D ¼ 40
at several �. Material parameters can now be obtained from
these curves.
Relative values of K1, K3, and C are determined as

follows: Eqs. (3) and (4) are solved using a finite element

method with two free parameters, � and �, where � ¼
K=CA1=2 is the dimensionless ratio between the average
elastic constant and wall anchoring. A modified Newton-
Raphson method finds � and � that minimize the least
square difference on all arcs, r ¼ 1:5L, 1:75L, and 2L,
between the computed solution and experimental data
(>190 data points per fit). As an example, the lines in
Fig. 2(d) show results for L=D ¼ 40 at r ¼ 1:75L. The
root mean squared error in ’ for all the fits was<0:03 rad
and <0:045 rad for L=D ¼ 40 and 60, respectively. The
excellent agreement between experimental data and fits
demonstrates that, on average, granular rod patterning is
similar to the nematic continuum equilibrium solution.
Figures 3(a) and 3(b) show the extracted � and �, respec-

tively, as a function of �. For � < 30, � appears constant,
Fig. 3(a) (open symbols), with an average value of�0:66�
0:04 (dotted line) and �0:76� 0:05 (dashed line) for
L=D ¼ 40 and 60, respectively. These values signify that
K3 is appreciably stiffer than K1. For comparison, theory
predicts � for hard rods and prolate hard ellipsoids in 3D to
be between�0:54 and�0:77 [14,15]. Also, simulations of
prolate hard ellipsoids estimate � between�0:14 to�0:59
[15], and experiments with tobacco mosaic virus measured
� to be � � 0:89 [16]. Excluded volume interactions dic-
tate the values of K1 and K3 obtained in theory and simu-
lations. These interactions also determine the degree of
ordering S and depend on � and L=D [14,15]. However,
the small variation in �with � falls within our experimental
uncertainty. For changes inL=D, simplemean field theories
predict that while K1 and K3 both grow, � remains con-
stant [14]. Interestingly, our results suggest that when all
interactions are considered, as realized in the experiment,
� too may vary with L=D, so that bend increases faster
than splay.

FIG. 2 (color online). Changes in nematic director orientation
around point defects. For all plots, L=D ¼ 40. (a) Probability
distribution of finding equilibriumlike point defects in granular
experiments as a function of the normalized d distance from the
wall, d=L. (b) Schematic of a point defect at a boundary. We
measure the orientation of the local nematic director, ’, on arcs
located r distance from the center of the defect, where � is with
respect to the wall normal. (c) Variation of ’with � at r ¼ 1:75L
of all point defects at � ¼ 15. (d) Variation of ’ with � at
r ¼ 1:75L averaged over all point defects, for � ¼ 12:5 (�),
15 (�), 25 (h), and 30 (þ ), with their corresponding fits to
F (lines). For each L=D and �, we collected >40 defects, with
an average of � 150 defects. Error bars, estimated using a
bootstrapping method, fall within the symbol size.
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Figure 3(b) (symbols) shows an increase in � with �.
This means that K becomes stronger relative to C with
increasing �. Therefore as � increases, the energetic pen-
alties for deformations in the bulk nematic outweigh the
energetic penalties for rod misalignment with the bounda-
ries. This trend concomitantly causes a progressive de-
crease in F bulk=F wall with �, Fig. 3(c) (open symbols).
For � < 30, the trend in � appears linear, where the line in
Fig. 3(b) shows the least squares fit. Using this linear trend,
we derive the isoepsilon curve for � ¼ �0:66 (dotted line)
and �0:76 (dashed line), Fig. 3(c).

For � ¼ 30, the change in ’ is small with respect to �,
Fig. 2 (d,þ). In this regime, large changes in � and � yield
small curvature variations in ’ð�Þ. Since these variations
are on the order of experimental noise, we found that
multiple pairs of � and � fit the data. We, therefore, set
� ¼ �0:66 and�0:76 for L=D ¼ 40 and 60, respectively,
and performed a single parameter fit to obtain �. Although
the linear dependence from the rest of the data does not
hold, � continues to increase with �, and the trend for
F bulk=F wall is well maintained. (Constraining both � and
� to follow the trends of the other data did not yield good
fits. Also, constraining � to follow the linear trend resulted
in an unrealistic single parameter fit of � > 0.) While the
transition from bipolar to uniform patterning is continuous
in nematic droplets [10], a pseudophase transition due to

finite size effects can be observed in more confined geo-
metries [13]. The abrupt change in � may result from such
finite size effects.
In conclusion, even though our system of driven granu-

lar rods is far from the continuum limit and in a nonequi-
librium steady state, we find that an equilibrium continuum
description can capture many key features of the observed
rod patterning. Moreover, we used this model to estimate
the elastic anisotropy and relative wall anchoring for
granular materials, thereby deepening the link to ideal
hard rods. However, significant fluctuations in the pattern-
ing exist, for example nonpolar defects, that cannot be
captured by this simple mean field description. Since
granular materials commonly exhibit nonequilibrium pat-
terning, it remains an open question whether these other
defects result purely from finite sample size or also from
nonequilibrium kinetics.
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FIG. 3. Relative strength of elastic constants and wall anchor-
ing in granular experiments. In all figures, open symbols
[L=D ¼ 40 (�), 60 (4)] indicate a two parameter fit, � and �,
of F , while filled symbols show a single parameter fit, �, for
� ¼ 30 where � ¼ �0:66 (dotted line), �0:76 (dashed line) for
L=D ¼ 40 (d), 60 (m), respectively (see text). (a) Elastic con-
stant anisotropy � as a function of �. (b) Dimensionless ratio of
the average elastic constant to wall anchoring, �, versus �. The
line is a linear least squares fit of the data (all open symbols).
(c) F bulk=F wall versus �. Lines indicate the iso-� curve for
� ¼ �0:66 (dotted), �0:76 (dashed), and the linear relation of
� versus � found in (b). Error bars in all graphs are determined
by bootstrapping.
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