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I present a tractable theory for the resonant inelastic x-ray scattering (RIXS) of magnons. The low-

energy transition operator is written as a product of local spin operators and fundamental x-ray absorption

spectral functions. This leads to simple selection rules. The scattering cross section linear (quadratic) in

spin operators is proportional to the fundamental magnetic circular (linear) dichroic spectral function.

RIXS is a novel tool to measure magnetic quasiparticles (magnons) and the incoherent spectral weight, as

well as multiple magnons up to very high energy losses, in small samples, thin films, and multilayers,

complementary to neutron scattering.
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Magnetic excitations in solids are traditionally investi-
gated with inelastic neutron scattering. This technique has
led to a better understanding of magnetism in general and
shaped the thinking of physicists in terms of magnons as
the magnetic quasiparticles present within a solid. It is
important that the interaction of neutrons with the mag-
netic moment is well understood and can be approximated
by a function linear in spin operators.

One might expect that x rays are not suited for the study
of magnetic excitations, as photons, contrary to neutrons,
do not carry a magnetic spin and therefore cannot directly
excite single magnetic excitations. Recent resonant inelas-
tic x-ray scattering (RIXS) experiments see clear dispers-
ing magnetic excitations [1–4]. More high quality data are
expected due to the experimental improvement in both
brilliance and resolution [5,6]. For neutron scattering the
magnetic dipole interaction between the neutron and elec-
tron spin is well understood. For RIXS the effective mag-
netic interaction is highly nontrivial. The optical dipole
transition does not introduce spin-flip excitations. The
magnetic excitations are a result of core-hole spin-orbit
coupling and many-body interactions active in the resonant
intermediate state [7–14].

Based on local cluster calculations de Groot et al. [7]
realized that magnetic excitations are in principle possible.
Luo et al. [8] showed that, within the fast collision ap-
proximation, it is possible to describe the RIXS spectra in
terms of a low-energy scattering operator, which can excite
single magnons. At the Cu L2;3 edge this approximation

allows one to describe the magnetic excitations including
their momentum and polarization dependence [9,10]. In
general, however, the RIXS spectra show not only a strong
momentum and polarization dependence, but also a strong
resonant energy dependence [1,11]. In order to include
this, one has to take into account the interactions in the
intermediate state, without neglecting the momentum de-
pendence of the final state.

Within this Letter I present an effective low-energy
operator for RIXS, focused on magnetic excitations. The

idea of the derivation is not to make approximations to the
Hamiltonian or to the Green functions used to evaluate the
RIXS spectral function. Using symmetry arguments an
exact solution for magnetic excitations can be obtained
by factorizing the RIXS transition operator into symmetric
polynomials of spin operators and fundamental x-ray ab-
sorption spectral functions. The fundamental spectral func-
tions describe the dependence of the x-ray absorption on
the magnetic momentm. These are the isotropic, magnetic
circular dichroic (XMCD), and magnetic linear dichroic
(XMLD) spectral functions [15].
I will start the derivation with the Kramers-Heisenberg

formula for the double differential cross section:
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where i (f) labels the set of initial (final) states, Ei is the
energy of state jii, H is the Hamiltonian, and � is the
lifetime broadening, which, if all states are included in
the Hamiltonian, goes to zero. In practice one only keeps
the relevant states in the basis set ofH. The influence of the
neglected states is included by a possible state-dependent
nonzero value of �. The photon energy and the polarization
of the incoming (outgoing) photon is given by !iðoÞ and
"iðoÞ. T� is the optical transition operator given by the

perturbation of the photon field on the system: T� ¼ p �
A, with A the photon vector field and p the electron
momentum operator. The state jii represents the ground
state, for example, a magnetically ordered Néel state. The
operator T creates a core hole and adds a conduction
electron to the system. The state given by Tjii is in general
not an eigenstate of H and it will fluctuate in time. The
Green function ð!i þ Ei þ {�=2�HÞ�1 describes this
propagation. A possible propagation path that would add
a magnetic excitation to the system could be the flip of the
core spin due to the core-hole spin-orbit coupling. Many
other excitations are possible. After the Green function has
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acted on the state Tjii, the operator Ty fills the core hole
and at the same time annihilates a valence electron. This
entire process might leave the system in an excited state.

Using �ð!þ Ei � EfÞ / Im½lim�!0þð!þ Ei � Ef þ
{�=2Þ�1� one can introduce the following notation:
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with ! ¼ !i �!o, and

R"i"o
!i

¼ Ty
"o

1

!i þ Ei þ {�=2�H
T"i : (3)

The operator R"i"o
!i

is the low-energy effective scattering
operator. The operator both creates and annihilates a core
hole, leaving the system in a low-energy excited state. The
!i dependence of R

"i"o
!i

describes the true resonant nature
of RIXS. The Green function ð!þ Ei þ {�=2�HÞ�1 in
Eq. (2) describes how these low-energy excitations, for
example, a spin-flip, propagate through the sample.

It is useful to factorize the momentum dependence of
R"i"o
!i

. The photon field A can be expanded around each
atom at site rj. One should take into account that A

changes phase when one changes lattice position. For
photon fields described by a plane wave the phase shift is
given by a simple exponential:

T" ¼ p �A ¼ X
j

e{k�rjpj �Aj ¼
X
j

e{k�rjTj;"; (4)

where the sum is over all atoms, k is the photon wave
vector, rj is the position of atom j, and pj (Aj) is the

momentum operator (photon vector field) expanded around
atom j.

Tj;" (Ty
j0;") creates (annihilates) a core hole at site j (j

0).
For core level spectroscopy one can assume that the core
hole does not hop from one site to another. The site where
the core hole is created is thus the same as the site where
the core hole is annihilated. Inserting this in the definition
of R"i"o

!i
yields:
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with q ¼ ki� ko.
Before factorizing the effective scattering operator R"i"o

!i;q

into spin operators and fundamental x-ray absorption spec-
tral functions, I will address a few general properties of
R"i"o
!i;q. It is interesting to note that the conductivity tensor at

x-ray energies is defined such that ��o � � � �i ¼ hijR"i"o
!i;qjii.

The absorption for a given polarization is proportional
to �Im½�� � � � �� at q ¼ 0. In order to calculate the
inelastic scattering between state jii and state jfi, one
needs to evaluate hfjR"i"o

!i;qjii. Using that 2hfjR"i"o
!i;qjii ¼

hf þ ijR"i"o
!i;qjf þ ii þ {h{f þ ijR"i"o

!i;qj{f þ ii � ð1 þ {Þ
ðhijR"i"o

!i;qjii þ hfjR"i"o
!i;qjfiÞ, one realizes that the RIXS tran-

sition probability for making excitations from state jii to
state jfi is determined by x-ray absorption spectral func-
tions of the initial state, the final state, and linear combi-
nations of these two states. For magnetic excitations jii
could be a state with spin-down, jfi a state with spin-up.
The real and complex linear combinations are states with
rotated spin directions. The fundamental spectral functions
describe the dependence of the x-ray absorption on the
magnetization direction of a given system. For magnetic
excitations the RIXS transition probability between state
jii and state jfi is thus given by some linear combination of
fundamental spectral functions. Below I will derive this
dependence exactly with the use of symmetry arguments.
For magnetic excitations one can restrict the basis set of

R"i"o
!i;q to the ground state and all states with all possible spin

excitations from the ground state. Within this basis one can
use the theorem of operator equivalence as introduced by
Stevens [16] for the description of crystal fields in rare-
earth compounds. Any operator acting in spin space only
can be written as a polynomial of spin operators. R"i"o

!i;j
¼

PðSÞ, where P remains to be determined.
The terms in P are restricted by symmetry relations. I

will first assume spherical symmetry and later branch down
to the possible crystal symmetries. In general R"i"o

!i;j
must be

a scalar. In spherical symmetry R"i"o
!i;j

can only depend on

the angle between �i and ��o. Operators of the form ��0 � �i,
��0 � �i � S, ð��0 � SÞð�i � SÞ þ ð�i � SÞð��0 � SÞ, and ð��0 � �iÞ
ðS � SÞ are allowed.
The prefactors of these different symmetry-allowed

terms can be obtained using the notion that the RIXS
spectral function for zero energy loss should reproduce
the elastic scattering. The equation for the elastic scattering
follows from the Kramers-Heisenberg equation by restrict-
ing the possible excitations to the ground state:

�ðq; ! ! 0Þ ¼ lim
�!0þ

hijR"i"oy
!i;q jiihij 1

!þ Ei þ {�=2�H

� jiihijR"i"o
!i;qjii

) ��

��
/ jhijR"i"o

!i;qjiij2: (6)

At the same time, for elastic scattering one can take
advantage of the optical theorem which states that the
elastic scattering is related to the x-ray absorption spectral
function [17]. The elastically scattered signal is propor-
tional to j��o � � � �ij2, confirming the relation between
R"i"o
!i;q and the conductivity tensor. Hannon et al. [18] related

the elastic intensity to the magnetization direction; this can
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be used to determine the prefactors for the inelastic scat-
tering. The elastic scattering is given by [18,19]

hijR"i"o
!i;j

jii ¼ �ð0Þ"i � "�o þ �ð1Þ"i � "�o �mj

þ �ð2Þ
�
ð"i �mjÞð"�o �mjÞ � 1

3
"i � "�o

�
; (7)

where �ð0Þ is the numerical value of the complex isotropic

spectral function, �ð1Þ and �ð2Þ are the complex, funda-
mental, XMCD and XMLD spectral functions, respec-
tively, and mj is a unit vector in the direction of

magnetization. The operator R"i"o
!i;j

is given in terms of

symmetric spin operators as

R"i"o
!i;j

¼ �ð0Þ"i � "�o þ �ð1Þ

s
"�o � "i � Sj þ �ð2Þ

sð2s� 1Þ
�

�
"i � Sj"�o � Sj þ "�o � Sj"i � Sj � 2

3
"i � "�oS2j

�
;

(8)

where Sj is the spin operator acting at site j and s the

expectation value hS2j i ¼ sðsþ 1Þ. For real crystals the

local point group has to be included. This leads to a
branching of the fundamental spectral functions [15]
and polynomials of higher orders in S, up to an order of
2s [19]. Equation (8) is the main result of this Letter and an
exact form of the RIXS transition operator for magnetic
excitations truncated to single site transitions. It leads to
beautifully simple selection rules: One can measure single
spin-flip transitions with cross polarized light for spins in
the plane of the polarizations. The operator quadratic in S
can lead to single (�S ¼ 1) and double (�S ¼ 2) spin-flip
transitions, as well as contributions to the elastic line. For

S ¼ 1=2 systems, �ð2Þ is zero by symmetry.
In order to clarify the method I present RIXS spectra at

the L2;3 edge of samples containing Cu2þ inD4h symmetry

and Ni2þ in Oh symmetry. I will use linearized spin-wave
theory for a Heisenberg model on a 1D chain, a 2D square,
and a 3D cubic lattice with nearest neighbor interactions.
Linear spin-wave theory assumes local ordered moments.

For perfect one-dimensional samples the ground state is
not ordered, and for S ¼ 1=2 systems the magnetic exci-
tations are two spinon excitations [20]. It is often more
transparent to write R"i"o

!i;j
as the inner product of two

polarization vectors and a 3� 3 tensor. In such a matrix
notation, R"i"o

!i;j
for Cu2þ, a S ¼ 1=2 system, in tetragonal

symmetry becomes

R"i"o
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¼ "�o �
�ð0Þ

aB1g
2Sz�

ð1Þ
a2u �2Sy�
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�2Sz�
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0
BBBB@

1
CCCCA �"i: (9)

The fundamental spectra of Cu2þ determining the RIXS
transition at the L2;3 edge can be seen in Fig. 1(a). They

show a striking feature: the �ð0Þ
aA
1g

and �ð1Þ
eu spectra are zero.

This is a direct consequence of having only one hole with
x2-y2 symmetry in which one cannot excite a p electron
with z polarized light. With RIXS one cannot measure
spin-flip excitations for fully aligned spins with Sz ¼
�1=2 oriented perpendicularly to the dx2�y2 orbital [9].

As shown recently, direct spin-flip scattering is allowed in
all other situations [10]. For real systems single magnon
excitations will always be measurable as S ¼ 1=2 fully
aligned spins never exist in a solid.
Knowing the transition probability one can calculate the

RIXS spectral function, using, for example, linearized
spin-wave theory [20]. In Figs. 1(c)–1(e) I show the spec-
tral function as one would measure with RIXS in the
cuprates. One finds that the intensity goes to zero at �
and diverges at the antiferromagnetic Bragg peak. This
is a well-known behavior for collective excitations [20].
The calculations for a two-dimensional square lattice
are in good agreement with resent measurements on
La2CuO4 [4].
For Ni2þ in cubic symmetry (a S ¼ 1 system) the reso-

nant inelastic scattering transition matrix becomes
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FIG. 1 (color online). Left: Fundamental x-ray absorption spectra that enter into the RIXS transition operator as energy dependent
complex matrix elements calculated for (a) Cu2þ and (b) Ni2þ. Right: The Cu2þ and Ni2þ one magnon (c)–(e) and Ni2þ two
magnon (f)–(h) RIXS spectral function, calculated using linear spin-wave theory for a 1D chain (c),(f), a 2D square (d),(g), and a 3D
cubic (e),(h) Heisenberg model in energy loss units of zSJ (number of neighbors� spin� exchange constant).
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The numerical values of � at the L2;3 edge for Ni2þ are
plotted in Fig. 1(b). There are four fundamental spectra as
the XMLD (�ð2Þ) spectra branch to two different represen-
tations (�ð2Þ

eg and �ð2Þ
t2g ). In order to separate the different

contributions one can use different scattering geometries or
different resonant energies. One should realize that inter-
ference terms between the different channels also have to
be considered. The fundamental x-ray absorption spectra
are well known and can be calculated with quite good
accuracy, simplifying the disentanglement of the different
scattering channels.

In Figs. 1(c)–1(h), I show the one [panels (c)–(e)] and
two [panels (f)–(h)] magnon intensity as one could mea-
sure with RIXS in Ni2þ samples. For real geometries one
would measure a linear combination of the two spectral
functions depending on resonance energy and polarization
as discussed above. For the single magnon spectral func-
tion only a single peak is seen at every momentum. For the
two magnon spectral function a band is observed with the
requirement that the sum of the momenta for the two
magnons is equal to the transferred q. One therefore might
expect not to see any q dependence. The single magnon
intensity diverges at the momentum corresponding to
the antiferromagnetic order. This leads to an observable
dispersion for the two magnon spectral function in one-
dimensional samples [Fig. 1(f)]. For a three-dimensional
sample, the main peak of the two magnon spectra shows
hardly any detectable momentum dependence [Fig. 1(h)],
in good agreement with recent measurements on NiO [21].
The one magnon branch does disperse.

In conclusion, I have presented a tractable theory for the
calculation of RIXS spectral functions. It fully incorpo-
rates the intermediate state Hamiltonian including the
core-hole spin-orbit coupling and the multiplet features
as well as the momentum dependence of the low-energy
excited states. This is achieved by factorizing the RIXS
spectral function into two parts for which different approx-
imations are used. The low-energy Green function can be
calculated within any of the standard approximations avail-
able to describe spin waves or other excitations at hand.
The transition operator is written as local operators multi-
plied by fundamental x-ray absorption spectra. The tran-
sition operator has a simple form that allows one to
determine selection rules depending on the polarization
of the incoming and outgoing light. RIXS measurements
can provide us with detailed information on both the

magnons and the incoherent spectral weight, which con-
tains information on the momentum dependent interactions
of magnons with themselves and other degrees of freedom
in the system. The RIXS cross section at the TM L2;3 edge

is so large that the technique can be used to measure small
samples, thin films, or multilayers, making it possible to
measure magnetic excitations in a whole new class of
materials.
I would like to thank Giniyat Khaliullin, Giacomo

Ghiringhelli, and Vladimir Hinkov for valuable
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