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A new effect is described by which primordial gravity waves leave a permanent signature in the large

scale structure of the Universe. The effect occurs at second order in perturbation theory and is sensitive to

the order in which perturbations on different scales are generated. We derive general forecasts for the

detectability of the effect with future experiments and consider observations of the prereionization gas

through the 21 cm line. It is found that the Square Kilometer Array will not be competitive with current

cosmic microwave background constraints on primordial gravity waves from inflation. However, a more

futuristic experiment could, through this effect, provide the highest ultimate sensitivity to tensor modes

and possibly even measure the tensor spectral index. It is thus a potentially quantitative probe of the

inflationary paradigm.
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Introduction.—It has been proposed that redshifted
21 cm radiation, from the spin flip transition in neutral
hydrogen, might be a powerful probe of the early Universe.
The era before the first luminous objects reionized the
Universe–around redshift 10–contains most of the observ-
able volume of the Universe, and 21 cm radiation is the
only known probe of these so-called dark ages (see
Furlanetto, Oh, and Briggs [1] for a review). The density
of the hydrogen could be mapped in 3D analogous to how
the cosmic microwave background (CMB) is mapped in
2D. The wealth of obtainable statistical information may
allow for the detection of many subtle effects which could
probe the early Universe. In particular, the primordial
gravity wave background, also referred to as tensor pertur-
bations, is of considerable cosmological interest.

Inflation robustly predicts the production of tensor per-
turbations with a nearly scale-free spectrum; however, their
amplitude is essentially unconstrained theoretically. The
amplitude of the tensor power spectrum is quantified by r,
the tensor to scalar ratio. The current upper limit is r <
0:24 at 95% confidence [2]; however, upcoming CMB
measurements will be sensitive down to r of a few percent
[3]. The current limits on r correspond to characteristic
primordial shear on the order of 10�5 per logarithmic
interval of the wave number.

Several probes of gravitywaves using the prereionization
21 cm signal have been proposed. These include polariza-
tion [4] and redshift space distortions [5]. Dodelson, Rozo,
and Stebbins [6] considered the weak lensing signature of
gravitywaves and found that the signal is sensitive to the so-
called metric shear. This is closely related to the present
work.

Here we describe a mechanism by which primordial
gravitational waves may leave an imprint in the statistics
of the large scale structure of the Universe. This signature
becomes observable when the gravity wave enters the
horizon and begins to decay.

Mechanism.—In the following, Greek indices run from 0
to 3 and lowercase Latins from 1 to 3. Latin indices are
always raised and lowered with Kronecker deltas. Commas
denote partial derivatives, and an overdot ( _) represents a
derivative with respect to the cosmological conformal time.
Finally, we adopt a mostly positive metric signature
ð�1; 1; 1; 1Þ.
We start with an inflating universe with some distribu-

tion of previously generated tensor modes that are now
superhorizon. Scalar, vector, and smaller scale tensor
modes may exist, but their contribution to the metric is
ignored. The line element is given by

ds2 ¼ að�Þ2½�d�2 þ ð�ij þ hijÞdxidxj�; (1)

where a is the scale factor, � is the conformal time, and a
spatially flat background geometry has been assumed. The
metric perturbations hij are assumed to be transverse and

traceless and thus contain only tensor modes. The elements
of hij are also assumed to be small such that only leading

order terms need be retained. The assumption that all
tensor modes under consideration are superhorizon implies
that kh � _a=a, where kh denotes the wave numbers of
tensor modes. The frame in which the line element takes
the form in Eq. (1) will hereafter be referred to as the
cosmological frame (CF).
By the equivalence principle, it is possible to perform a

coordinate transformation such that the space-time appears
locally Minkowski at a point. New coordinates are defined
in which the tensor modes are gauged away at the origin:

~x � ¼ ðx� þ 1
2h

�
�x

�Þ; (2)

where the elements h0� are taken to be zero. The metric
now takes the form (up to first order in hij)

ds2 ¼ a2½�d�2 þ �ijd~x
id~xj � ~xc@�h�cd~x

�d~x��: (3)
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This frame will be loosely referred to as the locally
Friedmann frame (LFF), because in these coordinates the
metric is locally that of an unperturbed Friedmann-
Lemaı̂tre-Robertson-Walker universe. We will give quan-
tities in these coordinates a tilde (~) to distinguish them
from their counterparts in the CF. It is seen from Eq. (3)
that the local effects of gravity waves are suppressed not
only by the smallness of hij but also by kh=k, where k ¼
L�1 and L is some length scale of interest. This will be
important in justifying some later assumptions. Note that
for superhorizon gravity waves, temporal derivatives are
much smaller than spatial ones.

On small scales, inflation generates scalar perturbations
which are then carried to larger scales by the expansion. By
the equivalence principle, physical processes on small
scales cannot know about the long wavelength tensor
modes. As such, these small scale scalar modes must be
uncorrelated with the long wavelength tensor modes. We
assume statistical homogeneity and isotropy in the LFF as
would be expected from inflation. The power spectrum of
scalar perturbations can then be written as a function of

only the magnitude of the wave number, i.e., ~Pð~kaÞ ¼ ~Pð~kÞ.
This applies only within the local patch near the point
where the tensor mode was gauged away. The average in
the definition of the scalar power spectrum is over realiza-
tions of the scalar map but not the tensor map.

In the CF, the isotropy is broken. Transforming back to

cosmological coordinates maps ~ki ! ki � kjh
j
i=2. The

power spectrum becomes sheared:

PðkaÞ ¼ ~PðkÞ � kikjh
ij

2k

d ~P

dk
þO

�
kh
k
hij

�
þOðh2ijÞ: (4)

If the metric perturbations are not assumed to be traceless,
the right-hand side of this equation gains an additional term
proportional to this trace. This deviation from isotropy is
not observable since any possible observation would take
place in the LFF.

It is noted that the leading order correction to the CF
power spectrum is not suppressed by kh=k. It is therefore
not expected that the residual terms in the LFF metric [Eq.
(3)] can break isotropy to undo CF anisotropy. However, if
it was the CF in which the power spectrum should be
isotropic, then there would be observable anisotropy in
the LFF. This would be a violation of the equivalence
principle, since an experiment local in both space and
time would be able to detect the superhorizon tensor modes
by measuring the power spectrum of the locally generated
scalar perturbations.

We would now like to evolve the system to some later
time when observations can be made. Ignoring the internal
dynamics of the scalar perturbations, we solve for their
evolution as if they were embedded in a sea of test parti-
cles. This is trivial since an object at coordinate rest in the
CF will remain at rest for any time dependence of hij (this

is true at all orders). At some point well after inflation,
when the Universe is in its deceleration phase, the horizon

will become larger than the length scale of the tensor
modes. The tensor modes will then decay by redshifting,
and after some period of time the metric perturbations hij
become negligible. The CF and LFF then become equiva-
lent and both correspond to the frame in which observa-
tions can be made. The distribution of test particles is the
same as it initially was in the CF. As such, the initially
physically isotropic power spectrum now contains a mea-
surable local anisotropy given by Eq. (4). The values of the
initial metric perturbations can be determined by measur-
ing this distortion at any time in the future, constituting a
fossil of the initial tensor modes.
The scalar perturbations become nonstationary, and the

trispectrum gains the corresponding terms. This is analo-
gous to the apparent distortions expected in the CMB and
21 cm fields induced by gravitational lensing. Similarly,
the bispectra of mixed scalars and tensors were calculated
in Ref. [7], by employing similar methodology to that
presented here.
The effect described here is a second-order perturbation

theory effect, in that it is a small effect due to tensor modes
on the already small scalar perturbations. This coupling
occurs in the initial conditions, not between the dynamics
of the scalars and tensors. The simple argument presented
above avoided the complication of a full second-order
calculation, but it is expected that such calculations would
yield the same results. Specifically, an expression agreeing
with Eq. (4), to relevant order, was derived by Giddings and
Sloth [[8], Eq (4.5)] as part of a longer calculation.
Tests of inflation.—The above arguments relied on per-

turbations on large scales being generated before perturba-
tions on small scales. This is the case in any conceivable
model of inflation; however, it is not be the case in all
scenarios. As an illustrative example, in the cosmic defect
scenario perturbations are generated on small scales and
then causally transported to larger scales as the Universe
evolves. It is argued that, in this scenario, tensor perturba-
tions leave no fossils. A detection of primordial tensors by
another means (CMB B modes, for example) with an
observed lack of the corresponding fossils would provide
a serious challenge to inflation.
The most specific prediction of single field inflation is

the power spectrum of tensor modes, defined by

ð2�Þ3�ðka � k0aÞPhðkaÞ � hhijðkaÞhijðk0aÞi: (5)

Given the amplitude of the scalar power spectrum As, the
tensor power spectrum is fixed by a single parameter, the
tensor to scalar ratio r. The shape of the spectrum is then
nearly scale-free:

Ph ¼ 2�2rAs

k3

�
k

k0

�
nt
: (6)

We follow the WMAP conventions for defining Ph, As,
and r [9]. The spectral index is fixed by the consistency
relation nt ¼ �r=8 [10]. The pivot scale is taken to be

PRL 105, 161302 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

15 OCTOBER 2010

161302-2



k0 ¼ 0:002 Mpc�1, and we assume the WMAP7 central
value for As of 2:46� 10�9.

Because r is likely small, any deviation from a scale-
free spectrum will be difficult to measure, making the
verification of the consistency relation correspondingly
difficult. The CMB is sensitive primarily to large scale
tensor modes, with smaller scale modes having decayed by
recombination. Cosmic variance and lensing contamina-
tion will likely prevent a measurement of nt from the
CMB, unless the lensing can be cleaned from the signal
[11]. Conversely, the amplitude of the fossil signal does
not decay as the Universe expands. It may thus be possible
to make a measurement of the spectral index, provided r is
sufficiently large.

Statistical detection in large scale structure.—In prac-
tice, the tensor gravity wave fossils could be reconstructed
by applying quadratic estimators to the density field. Aside
from the increased dimensionality, this is identical to the
manner in which lensing shear is reconstructed [12,13].
Rather than considering the statistics of such estimators,
here we follow a simpler line of reasoning to approxi-
mate the accuracy to which the tensor parameter can be
measured.

We begin by asking how well a long wavelength, tensor
mode can be reconstructed from its effects on the scalar
power spectrum [Eq. (4)]. The metric perturbations are
assumed to be spatially constant and take the form

hij ¼ hþeþij ðẑÞ þ h�e�ij ðẑÞ; (7)

where eþij and e�ij are the polarization tensors and the ẑ

direction of propagation is chosen for convenience. The
uncertainty on the scalar power spectrum is

½�PðkaÞ�2 ¼ 2½PðkaÞ þ N�2; (8)

where N is the noise power. We use a Fisher matrix
analysis to sum this information over all ka to determine
the corresponding uncertainty on the shear hþ and h�.
Assuming an experiment whose noise is subdominant to
sample variance (N � P), the resulting variance is in-
versely proportional to the number of modes surveyed:

ð�hCÞ2 � ½Vðkmax=2�Þ3��1; (9)

where h stands for either hþ or h� (the superscript C
indicates that the formula applies for spatially constant
h), V is the volume of the survey, and kmax is set by the
resolution of the survey. The constant of proportionality
depends on the shape of the unsheared power spectrum
~PðkÞ, but to within a few tens of percent it is unity. The
21 cm emission will be difficult to observe on large scales
[1]; however, it is small scales that dominate the number of
modes and thus the reconstruction. It is only the coherence
of small scale anisotropy that must be measured on large
scales.

Given the reconstruction uncertainty on a spatially con-
stant shear, and the fact that reconstruction noise is scale-
independent (white) [12], the noise power spectrum for
spatially varying tensor modes is then

Nh ¼ 4Vð�hCÞ2 ¼ 4

�
2�

kmax

�
3
: (10)

The factor of 4 comes from the definition of the power
spectrum in Eq. (5), noting that hhijhiji ¼ 4hh2i.
We now sum over ka to determine the signal to noise as a

function of tensor power spectrum amplitude r. (From this
point forward, ka will refer to the wave number of a tensor
mode, not a scalar mode. The exception will be kmax, which
is the smallest scale at which a scalar can be resolved.) The
signal to noise ratio squared is then

SNR 2 ¼ X
ka;fþ;�g

P2
h

2ðNh þ PhÞ2
(11)

� V
Z kupper

klower

dkk2

2�2

P2
hðkÞ

ðNh þ PhÞ2
: (12)

It is seen from the redness of the spectrum Ph [Eq. (6)] that
the result is completely independent of the upper limit of
integration. The same redness makes the final result ex-
tremely sensitive to the lower limit. As described above, the
fossil of a primordial tensor mode can be observed only
once the mode has decayed. This begins to happen when
the scale of the gravity wave becomes comparable to the
horizon scale, and as such, the largest scale observable
mode has wavelength klower � aH.
For an initial detection, we assume that noise dominates

sample variance at each ka, i.e., Nh � Ph. Setting the
signal to noise ratio to be 2, for a 95% confidence detec-
tion, yields a minimum detectable amplitude of

rmin ¼ 32�2

Ask
3
max

�
6

VVHðzÞ
�
1=2

; (13)

where VH � ðaHÞ�3.
While the observability of 21 cm radiation depends on

the reionizaton model, one regime in which a strong signal
may exist is near redshift 15 [1]. The planned Square
Kilometer Array will aim to probe this era with 10 km
baselines [14]. By assuming a survey volume of 200
ðGpc=hÞ3 and a noiseless measurement, the limit on r
achievable with the Square Kilometer Array will be

rmin � 7:3

�
1:2 Mpc=h

kmax

�
3
�
200ðGpc=hÞ3

V

3:3ðGpc=hÞ3
VH

�
1=2

:

(14)

While this constraint is not competitive with current con-
straints from the CMB, it is a strong function of the
resolution of the experiment. The Low Frequency Array,
for instance, has baselines extending to 400 km. However,
the Low Frequency Array will not have the sensitivity to
probe the dark ages [15]. It is the physical shear due to
gravity waves at the source that is being measured, and all
light propagation effects, such as the lensing considered in
Dodelson, Rozo, and Stebbins [6], have been ignored.
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Similar arguments are used to find the achievable error
on the spectral index nt. By properly considering the
degeneracy with r, the error on nt is

�nt ¼ F

��
2�

kmax

�
3 1

rAsV

�
1=2

; (15)

where F is a function of the combination of parameters
VH=ðk3maxrAsÞ. In the limit that Phðk ¼ aHÞ � Nh, which
is the limit in which a measurement of nt is possible, F is
approximately 6. By assuming the same volume and red-
shift as above, and that r ¼ 0:1, the consistency relation is
tested at the 2 sigma level for kmax ¼ 168h=Mpc. The
tensor power spectrum and error bars for this scenario are
shown in Fig. 1.

Such a measurement is very futuristic indeed, requiring
a nearly filled array with greater than a thousand kilometer
baselines. Note that such an experiment would be sensitive
to r down to the 10�6 level. Also, higher redshifts contain
even more information, though their observation is techni-
cally more challenging.

Discussion.—Aside from the technical challenge of
mapping the 21 cm signal over hundreds of cubic giga-
parsecs and down to scales smaller than a megaparsec,
there may be other competing effects that could hinder a
detection. Of primary concern is weak lensing, which also
shears observed structures, creating apparent local anisot-
ropies. The weak lensing shear is of the order of a few
percent and is thus many orders of magnitude greater than
gravity wave shear. However, the 3D map of gravity wave
shear will be transverse, transforming intrinsically as a
tensor. To linear order, the lensing pattern is the gradient
of a scalar. Even at higher order, lensing always maps one
point in space to another and is thus at most vectorlike.
This test does not exist for the CMB or lensing due to the
lower dimensionality of these probes.

Also of concern is the preservation of the anisotropy on
small scales. The scale corresponding to k ¼ 168h=Mpc is

still larger than the Jeans length at these redshifts, and as
such hydrogen should trace the dark matter. However, the
evolution of scalar perturbations is mildly nonlinear, and it
is possible that this evolution will erase the anisotropy.
Detailed analysis of the nonlinear erasure of the anisotropy
is deferred to future investigation.
There has been much recent interest in searching for

statistical anisotropy in the Universe, which has some
implications for the fossil signal. The constraints on the
quadrupole in the large scale structure power spectrum by
Pullen and Hirata [16] should already imply a weak con-
straint at the r & 106 level. Quadrupolar statistical anisot-
ropy in the CMB is, however, not relevant, since modes
spanning the surface of last scatter remain superhorizon
today. Fossils should leave a signature in the CMB at
smaller angular scales, but this should be inseparably con-
taminated by higher order lensing.
CMB B modes will be the most sensitive probe of

primordial gravity waves in the next generation of experi-
ments. However, fossils may eventually be sensitive well
below the limits of the CMB.
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FIG. 1. Primordial tensor power spectrum obeying the consis-
tency relation for r ¼ 0:1. The solid line is the tensor power
spectrum. Error bars represent the reconstruction uncertainty on
the binned power spectrum for a perfect experiment, surveying
200 ðGpc=hÞ3 and resolving scalar modes down to kmax ¼
168h=Mpc. The dashed, nearly vertical, line is the reconstruction
noise power. The nonzero slope of the solid line is the deviation
from scale-free.
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