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We show that microscopic calculations based on chiral effective field theory interactions constrain the

properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in

commonly used equations of state. Combined with observed neutron star masses, our results lead to a

radius R ¼ 9:7–13:9 km for a 1:4M� star, where the theoretical range is due, in about equal amounts, to

uncertainties in many-body forces and to the extrapolation to high densities.
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With the advances in observational capabilities, it is
becoming possible to obtain direct evidence for the size
of neutron stars [1]. Sources of information include mea-
surements of optical radiation from nearby isolated neutron
stars whose distances are known from parallax determina-
tions and observations of thermonuclear flares on the sur-
faces of neutron stars [2,3]. Neutron star seismology [4],
pulse profiles in x-ray pulsars [5], and moment of inertia
measurements [6] are additional sources. In the near future,
one expects gravitational wave signals from collapsing
stars and merging binary neutron stars to provide informa-
tion about the equation of state of dense matter [7].

In nuclear physics, recent developments of effective
field theory (EFT) and the renormalization group (RG)
for nuclear forces enable controlled calculations of matter
at nuclear densities [8–10]. In this framework, it is possible
to estimate the theoretical uncertainties due to neglected
many-body forces and from an incomplete many-body
calculation. In this Letter, we show that such calculations
of the equation of state (EOS) below nuclear densities
constrain the properties of dense matter, and the radii of
typical neutron stars, to a much higher degree than is
reflected in current neutron star modeling.

Neutron matter below nuclear densities.—Our studies
are based on microscopic calculations of neutron matter
using chiral low-momentum two-nucleon (NN) and three-
nucleon (3N) interactions [11]. The largest uncertainty for
the neutron matter energy arises from the couplings c3 and
(to a smaller extent) c1 that determine the leading two-
pion-exchange three-body forces among neutrons in chiral
EFT. We improve the range of c3 compared to Ref. [11] by
taking c3 values from extractions based on the same cou-
plings in the subleading two-pion-exchange NN interac-
tion, c3 ¼ �ð3:2–4:8Þ GeV�1 [12–14]. In addition, we
include a shift �c3 ¼ 1:0 GeV�1 to take into account
contributions at the next order for 3N forces [8]. In the

following we therefore use c3 ¼ �ð2:2–4:8Þ GeV�1 and
c1 ¼ �ð0:7–1:4Þ GeV�1 with a smooth n3Nexp ¼ 4 regulator.

The neutron matter calculational details are as in Ref. [11],
which suggested that the energy is perturbative at nuclear
densities. Using only NN interactions, we obtain a neutron
matter energy per particle ENN

n ð�0Þ=N ¼ 10:4 MeV at
saturation density �0 ¼ 2:7� 1014 g cm�3. (We define
the density � as the nucleon mass times the baryon den-
sity.) The inclusion of 3N forces leads to Enð�0Þ=N ¼
16:3� 2:2 MeV, dominated by the repulsive c3 contribu-
tion and the associated uncertainty. The 3N contribution of
� 6 MeV is to be compared to the NN potential energy �
�26 MeV (the kinetic energy is 3"Fð�0Þ=5 � 36 MeV),
and also the 3N uncertainty of� 2 MeV is consistent with
the contributions of higher-order 3N forces (given an
expansion parameter in chiral EFT of �1=3 at these
momenta). Other microscopic calculations lie within our
theoretical uncertainties [11], and at low densities
�� �0=10, the results are also consistent with calculations
for resonant Fermi gases including effective range contri-
butions [15].
Neutron star matter.—We extend our results to matter in

beta equilibrium using the parametrization

Eð�; xÞ
A

¼ Enð�Þ
A

� 4xð1� xÞS2ð�Þ þ 3x@c

4

�
3�2x�

m

�
1=3

;

(1)

where Enð�Þ is given by our neutron matter results,m is the
nucleon mass, and x the proton fraction. The last terms in
Eq. (1) incorporate the contributions from protons through
the symmetry energy S2ð�Þ and from electrons [16]. The
proton fraction in beta equilibrium is given approximately
by xð�Þ � ½4S2ð�Þ=ð@cÞ�3=ð3�2�=mÞ, and for S2ð�0Þ �
30 MeV, xð�0Þ � 5%. The energy difference between neu-
tron matter and matter in beta equilibrium is � 1:1 MeV,
and this will have only a minor impact on our final results.
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We extract S2ð�Þ for nuclear densities using empirical
saturation properties,

S2ð�Þ ¼ Enð�Þ
A

þ aV � K

18�2
0

ð�� �0Þ2; (2)

with binding energy aV ¼ 16 MeV and incompressibility
K ¼ 230 MeV (which are within theoretical uncertainties
of the nuclear matter calculations of Ref. [10]). To include
the symmetry energy in Eq. (1), we use the ansatz S2ð�Þ ¼
�S2ð�=�0Þ� and fit �S2 � S2ð�0Þ and � to our neutron matter
results. The fit has a relative uncertainty of <5% for
densities �0=8< �< �1 � 3:0� 1014 g cm�3 (�1 is de-
fined by the neutron density �1;n ¼ 1:1�0). We obtain

the following symmetry energy parameters and xð�0Þ:
c1 (GeV�1) c3 (GeV�1) �S2 (MeV) � xð�0Þ
�0:7 �2:2 30.1 0.5 4.8%

�1:4 �4:8 34.4 0.6 7.2%

NN only, EM 26.5 0.4 3.3%

NN only, EGM 25.6 0.4 2.9%

The resulting pressure of neutron star matter is shown in
Fig. 1 for densities � < �1. The comparison of these
parameter-free calculations to a standard crust EOS [17]
shows good agreement to low densities � * �0=10 within
the theoretical uncertainties. The right-hand panel of Fig. 1
demonstrates the importance of 3N forces. The pressure
obtained from low-momentum NN interactions only, based
on the RG-evolved N3LO potentials of Entem and
Machleidt (EM) [12] or Epelbaum, Glöckle, and Meißner
(EGM) [13], differ significantly from the crust EOS
at �0=2.

Neutron stars.—The structure of nonrotating neutron
stars without magnetic fields is determined by solving the
Oppenheimer-Volkov (OV) equations. Because the central
densities reach values higher than �1, we need to extend

the uncertainty band for the pressure beyond �1. To this
end, we introduce a transition density �12 that separates
two higher-density regions and describe the pressure by
piecewise polytropes, Pð�Þ ¼ �1�

�1 for �1 < �< �12,
and Pð�Þ ¼ �2�

�2 for � > �12, where �1;2 are determined

by continuity of the pressure. Reference [18] has shown
that such an EOS with 1:5< �1;2 < 4:0 and transition

densities �12 � ð2:0–3:5Þ�0 can mimic a large set of neu-
tron star matter EOS. We therefore extend the pressure of
neutron star matter based on chiral EFT in this way, with
1:5< �1;2 < 4:5 and 1:5< �12=�0 < 4:5, as illustrated in

Fig. 1. The possibility of a phase transition at higher
densities is implicitly taken into account if one regards
the �1;2 values as averages over some density range.

We solve the OVequations for the limits of the pressure
band below nuclear densities continued to higher densities
by the piecewise polytropes. The ranges of �1;2 and �12 can

be constrained further: first, by causality, which limits the
sound speed to the speed of light and, second, by the
requirement that the EOS support a star of mass M ¼
1:65M� [19]. The resulting allowed range of polytropes
is shown by the light blue (gray) band at higher density in
Fig. 2 [20]. The comparison with a representative set of
EOS used in the literature [16] demonstrates that the
pressure based on chiral EFT interactions [the dark blue
(gray) band] sets the scale for the allowed higher-density
extensions and is therefore extremely important. It also
significantly reduces the spread of the pressure at nuclear
densities from a factor of 6 at �1 in current neutron star
modeling to a factor of 1.5.
Results.—In Fig. 3 we show the neutron starM-R curves

obtained from the allowed EOS range. The dark gray (blue)
region corresponds to the same band for the pressure in
Figs. 1 and 2. At the limits of this region, the pressure of
neutron star matter is continued as piecewise polytropes,
and all curves end when causality is violated. Should
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FIG. 1 (color online). Pressure of neutron star matter based on chiral low-momentum interactions for densities � < �1. The band
estimates the theoretical uncertainties from many-body forces and from an incomplete many-body calculation. At low densities, the
results are compared to a standard crust EOS [17], where the right-hand panel demonstrates the importance of 3N forces. The
extension to higher densities using piecewise polytropes (as explained in the text) is illustrated schematically in the left-hand panel.
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causality be violated before the maximum mass (at
dM=dR ¼ 0) is reached, one could continue the M-R
curves by enforcing causality. This would lead to a some-
what larger maximum mass but would not affect the
masses and radii of neutron stars with lower central den-
sities. We observe from the transition density points �12 in
Fig. 3 that the range of �1 dominates the uncertainty of the
general extension to high densities. Smaller values of �1

are excluded because the associated EOS is not able to
support a 1:65M� star. The larger allowed values of
the polytropic indices lead to very low central densities
�� ð2:0–2:5Þ�0.

We find that the pressure at nuclear densities and below
sets the scale for the M-R results. The dark gray (blue)
region in Fig. 3 ends almost at the central value of the
radius results. For a 1:4M� star, the radius is constrained to
R ¼ 9:3–13:5 km, as indicated by the vertical band. For
pure neutron matter the range is similar, R ¼ 9:3–13:3 km,
even though for a 1:4M� star individual models may differ
by up to 0.4 km compared to those for matter in beta
equilibrium. Furthermore, if a 2:0M� star were to be
observed, this would reduce the allowed range to R ¼
10:5–13:3 km. As for the EOS in Fig. 2, the presented
radius constraint significantly reduces the spread of viable
neutron star models; e.g., it is difficult to see how one can
obtain R � 15 km as is the case for the Shen EOS [21].
Finally, our results are more rigorous than an esti-
mate based on the empirical PR�4 correlation [16], which
for the values of the pressure we find Pð�0Þ ¼
1:4–2:1 MeV fm�3 implies R ¼ 9:4–11:9 km.

When chiral 3N forces are neglected, the neutron star
radius is significantly smaller, with RNN ¼ 8:8–11:0 km as
shown in Fig. 4 based on low-momentum NN interactions
only. This demonstrates that the theoretical error for the
radius of a 1:4M� star is due, in about equal amounts, to the
uncertainties in 3N forces and to the extension to higher
densities dominated by �1.
Effect of the crust.—In our calculations, the difference

between the neutron and proton masses was neglected and
the phases were assumed to be spatially uniform. In this
approximation, matter at low density consists only of
neutrons. The impact of using a more realistic EOS at
low densities can be investigated by observing that the
surface gravity of the star is approximately constant in
the outer layers. By integrating the equation of hydrostatic
equilibrium from the surface of the star up to a crust
density �c, one finds that the mass between the density
�c and the surface is proportional to the pressure at �c [22].
Thus the stellar mass is to a good approximation unaffected
by changes in the EOS at � < �c. To determine how
changes in the low-density EOS affect the radius,
we note that the thickness of the crust (� < �c) is
�R ¼ ½�ð�cÞ ��s�=½mgð1þ zÞ�, where g ¼ GMð1þ
zÞ=R2 is the surface gravity, with surface redshift

1þ z ¼ ½1� 2GM=ðRc2Þ��1=2 [23]. Here �s is the (neu-
tron) chemical potential at the surface of the star, where the
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FIG. 3 (color online). Neutron star M-R results for the EOS
based on Fig. 1. The thick (thin) lines, corresponding to the
left (right) branch, start from the low pressure limit c1 ¼
�0:7 GeV�1, c3 ¼ �2:2 GeV�1 (high pressure limit c1 ¼
�1:4 GeV�1, c3 ¼ �4:8 GeV�1). The dark gray (blue) region
corresponds to the band below nuclear densities in Figs. 1 and 2.
The different piecewise polytropes can be identified from the
colors and lines indicating �1=�2 and from the points denoting
�12. The vertical band gives the radius constraint for a 1:4M� star.
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pressure is zero. For the calculations in this Letter, �s ¼
mc2, while for realistic EOS of cold catalyzed matter it
includes the binding energy per particle of solid iron, �
8 MeV. Thus, use of a more realistic EOS at low densities
will increase the radius of the star by 8 MeV=½mgð1þ zÞ�.
This increases the radius for a 1:4M� star by 0:2–0:5 km,
leading to our final result R ¼ 9:7–13:9 km.

Other implications.—The relatively weak density de-
pendence of the nuclear symmetry energy also makes
predictions for the neutron skin of 208Pb. The symmetry
energy of a nucleus in the liquid droplet model consists
largely of bulk and surface contributions, the latter being
determined by an integration of S2ð�Þ through the nucleus
[24]. Assuming a quadratic density dependence for the
energy of symmetric nuclear matter and our results for
S2 ¼ �S2ð�=�0Þ�, one finds the ratio of the surface and
bulk symmetry parameters to be Ss= �S2 � 1:85� 0:25.
This leads to a neutron skin thickness �R ¼ 0:16–0:2 fm
for 208Pb, while the correlation with the slope of the
neutron matter energy [25] gives 0.14–0.19 fm. Therefore
we predict �R ¼ 0:14–0:2 fm, which can be tested in the
parity-violating electron scattering experiment [26].
Finally, we note that in a complementary approach [27],
the EOS of high-density matter is constrained from pertur-
bative QCD calculations, and that our results are consistent
with the astrophysical estimates of Ref. [3].

In this Letter, we have demonstrated that microscopic
calculations based on chiral EFT and many-body theory
constrain the pressure of matter at nuclear densities to
within �25%. This should be taken into account in mod-
eling stellar collapse, black hole formation, and neutron
stars. Even allowing for uncertainties in the low-energy
theory and the extrapolation to higher densities, we find
that the radius of a neutron star depends only weakly on its
mass and for a 1:4M� star is rather well constrained.
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FIG. 4 (color online). Same as Fig. 3 but for NN-only inter-
actions [thick (thin) lines are based on EM [12] (EGM [13])].
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