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We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance

entanglement distribution. Starting from states created by single-photon detection, we show how

entangled coherent state superpositions can be generated by means of homodyne detection. We show

that near-deterministic entanglement swapping with such states is possible using only linear optics and

homodyne detectors, and we evaluate the performance of our protocol combining these elements.
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Two regimes for optical quantum computation and
communication are commonly identified [1,2]. In the dis-
crete variable regime, single photons are the carriers of
information with information encoded, e.g., in their polar-
ization or frequency, and measurements are performed by
single-photon detection (SPD). In the continuous variable
regime, information is encoded in continuous degrees of
freedom of the light field such as the field quadratures,
which are measured via homodyne detection. Both regimes
have their advantages and drawbacks. On the one hand,
single photons are good for heralding events across lossy
channels since their discrete nature implies that no partial
loss can take place. Successful detection of a photon at the
channel output unambiguously identifies a successful
event. This is useful for entanglement generation [3,4].
On the other hand, certain tasks, such as quantum tele-
portation [5], can be accomplished unconditionally with
linear optics in the continuous regime while not in the
discrete one, and homodyne detection allows quadrature
measurements with much higher efficiency than what can
be achieved with SPD at present.

Quantum repeaters achieve scalable entanglement dis-
tribution across long lossy channels by first generating
entanglement over shorter segments which are then con-
nected by entanglement swapping and purification [6].
Reaching high rates thus requires both a good generation
scheme and efficient swapping. Repeaters combining con-
tinuous and discrete variables have recently been proposed.
Reference [7] relies on nonlinear interactions of light with
single spins in cavities, which is not easy to realize experi-
mentally. Reference [8] is based on linear optics, but makes
use of inefficient single-photon counters to perform entan-
glement swapping. Here we describe a quantum repeater
(Fig. 1) which combines entanglement generation based on
SPD with continuous variable techniques to efficiently
distribute states resembling

j�0
�ð�Þi ¼ ei�j�ij�i þ e�i�j � �ij � �i; (1)

where j�i is a coherent state and � is a phase (through-
out this Letter � is real). In quantum optics, coherent

state superpositions of this form, and similarly for a single
mode

j�0ð�Þi ¼ j�i þ j � �i; (2)

are often called ‘‘cat’’ states. Such states are useful for a
number of applications in quantum information, including
fault-tolerant linear optical computation and quantum tele-
portation [9,10]. Generating exact cat states is difficult,
since it requires, e.g., very strong Kerr nonlinearities [11].
Approximate cat states can be generated by photon sub-
traction [12–15], but unfortunately the average photon
number is usually restricted to & 1.
We demonstrate that near-deterministic entanglement

swapping of cat states using only linear optics and
homodyning is possible, and we devise an efficient
probabilistic scheme for generating states with many
photons and very good overlap with exact squeezed
single- and two-mode cat states. Our generation scheme
is reminiscent of that of Ref. [16], where creation of
squeezed single-mode cat states from Fock states was
demonstrated, but requires no input states with more than
a single photon in each mode and takes advantage of
quantum memories to significantly increase the rate.
Interestingly the scheme, which produces highly non-
Gaussian states, is also very similar to the Gaussifi-
cation protocol of Ref. [17] but run in a nonconvergent
regime. The elements of our repeater are outlined in
Fig. 1. In step I, Fock state entanglement between two
separated nodes is generated by means of SPD. In step II,
homodyning and beam splitters are used to create two-
mode cat states from the states generated in I, and in
step III, the entangled cat states are swapped to larger
distances. We discuss these steps one by one and then
finally consider the protocol in its entirety.
As shown in Fig. 1, the entanglement generation step I

can be implemented using two sources of two-mode
squeezed states, realized using, e.g., parametric down-
conversion crystals or ensembles of �-type atoms [4,18].
One photonic mode from each source impinges on a central
beam splitter, and a single photon is collected as indicated.
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Following a single SPD click, the remaining two modes are
projected to a Bell-like state [4]

1
ffiffiffi

2
p ðj01i þ j10iÞ þOð ffiffiffiffi

p
p Þ; (3)

where the last term represents contributions from multiple
excitations and is small for small pair production proba-
bility p, i.e., for weak squeezing. Because of the discrete
nature of single photons, clicks herald successful trans-
mission even for lossy channels and detectors.

In step II, states of the form (3) are combined on bal-
anced beam splitters, and the X quadratures of two of the
output modes are measured. The resulting state is kept, if
the outcomes sum to a value within an interval [��, �].
Otherwise it is discarded, and the process is restarted.
Upon success, the protocol is iterated with the output states
as new input states. To see that this scheme can produce
catlike states, let us first consider the limit � ! 0, p ! 0
and generation of a single-mode state (illustrated by, say,
the left-hand side of Fig. 1 II only). We start from two
sources, each producing a single excitation j1i corres-
ponding to the wave function

c 0ðxÞ ¼
ffiffiffi

2
p

��1=4e�x2=2x: (4)

The joint wave function for both sources has the form
c 0ðxÞc 0ðyÞ. A balanced beam splitter is then applied
to the pair of modes x, y, transforming the state

to c 0½ðxþyÞ= ffiffiffi

2
p �c 0½ðx�yÞ= ffiffiffi

2
p �/e�ðx2þy2Þ=2ðx2�y2Þ,

followed by a measurement of y. If we require y ¼ 0,
corresponding to � ! 0, the resulting unnormalized out-

put state takes the form e�x2=2x2. The process is now
iterated, combining this state with the output from another
pair of sources, etc. Afterm iterations (in Fig. 1 II,m ¼ 2),
the final output state wave function becomes

c mðxÞ ¼ �ð2m þ 1=2Þ�1=2e�x2=2x2
m
: (5)

This function closely resembles the wave function of the
state in Eq. (2). In fact, defining j�ð�Þi to be the normal-
ized single-mode cat state, we find that jc mi is well

approximated by Ŝð2Þj�ð�mÞi, where �m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m þ 1=2
p

and ŜðsÞ denotes squeezing in the variance of X by a factor
of s. The output state is thus very nearly a squeezed cat

state. The fidelity jhc mjŜð2Þj�ð�mÞij2 of the actual output
with respect to the squeezed cat exceeds 99% for m � 2.
Squeezing does not render our states less useful. They are
amplitude squeezed, making them more robust against
decoherence [19], and if desired they can be unsqueezed
by local operations. The required squeezing of 3 dB or less
is easily accessible in experiment. If the squeezing is
applied to the input Fock states, the single-mode setup
corresponds to amplification of small cat states via homo-
dyne detection [20,21]. The scheme can be generalized
from a single to an arbitrary number of modes by taking
the mode of the single excitations from the sources to be a
superposition of some other set of modes. For example,
Eq. (3) corresponds to an excitation in a symmetric super-
position of two spatial modes. More generally the new
mode variables form a vector x, and the source mode is
given by ayxwhere a is a unit vector. For a pair of sources,
the single-mode scheme is applied to each pair of corre-
sponding modes and we require jayyj � �, where y is the
vector of measurement outcomes. Separating out the mode
determined by a, the final state becomes jc miajvaci, where
jvaci is the vacuum state of the remaining modes.
Step II may be implemented entirely on traveling light

beams, in which case simultaneous success for all mea-
surements is required. The rate can, however, be signifi-
cantly increased if quantum memories are employed at
each level of the protocol, since then no simultaneity is
required. The homodyne measurements can be performed
on retrieved light fields or via quantum nondemolition
measurements directly on the memories [22]. To get a
nonzero probability for successful generation one needs
to take a nonzero value of �, and there will be a trade-off
between the generation rate and the output state fidelity. To
illustrate the trade-off with memories, we show in Fig. 2
a numerical simulation of single-mode-cat generation,

FIG. 1. (I) Generation of Bell-type entanglement between two
nodes. Light from two-mode squeezing sources is mixed on a
balanced beam splitter and a single photon is detected. The
remaining modes are stored in quantum memories (QM).
(II) Generation of approximate two-mode cat states. Pairs of
Bell-like states are joined at balanced beam splitters, and the
X quadrature is measured at one output of each beam splitter.
When the sum of the outcomes is close to zero, the state is kept,
and the process is iterated. (III) (a) Simple entanglement swap-
ping. Two two-mode cat states are joined on a balanced beam
splitter, and the outputs are homodyned. Success is conditioned
on an X outcome close to zero. (b) Improved entanglement
swapping using k auxiliary single-mode cat states of size (left
to right) 21=2�, 2�; . . . ; 2k=2�.
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obtained by varying �, averaging over all X outcomes in
[��, �]. Including a double excitation contribution of
1%, states with a fidelity of 90% with respect to

Ŝð2Þj�ð�3Þi, corresponding to an unsqueezed cat ampli-
tude � ¼ 2:9, can be generated at a rate of�0:02 times the
source rate, i.e., the rate at which (4) is produced.
Production of stored single photons is assumed much
slower than individual memory and detector operations.

As illustrated in Fig. 1 III(a), once entanglement has
been established within two neighboring segments, they
can be connected by locally mixing the modes at the
central node on a balanced beam splitter and measuring
the X and P quadratures at the two output ports. We will
first consider entanglement swapping with ideal cat states
and subsequently with the actual states produced in step II
of our scheme. We write j��ð�Þi for the normalized
equivalent of j�0

�ð�Þi in Eq. (1). The amount of entangle-

ment in j��ð�Þi varies with �, but for coherent state
amplitudes j�j2 � 2 the variation can be safely neglected
and j��ð�Þi contains one ebit of entanglement. We con-
sider entanglement swapping of two copies of j�0ð�Þi. The
idea of the swapping procedure is that several terms in the
input state may lead to the same measurement outcome.
Conditioning on this outcome thus projects the output
modes onto an entangled superposition state. Since each
input to the beam splitter is a coherent state j � �i, the
possible outputs are j � ffiffiffi

2
p

�i and j0i. There are two ways
to obtain the latter, and hence measuring X and condition-
ing on an outcome close to zero results in an entangled
output state. More formally, the state prior to swapping is
j�0ð�Þij�0ð�Þi. Introducing the shorthand j�þþi ¼ j�ij�i,
j�þ�i ¼ j�ij � �i etc., the (unnormalized) state after a
P measurement with an outcome p0 is

j�þ�ij
ffiffiffi

2
p

�ix þ j��þij �
ffiffiffi

2
p

�ix þ j�0
�0
ð�Þij0ix; (6)

where we have labeled the mode for which X is measured
by x, and �0 ¼ �2�p0. If � is large enough for j0i and
j ffiffiffi

2
p

�i to be nearly orthogonal, an X measurement with an
outcome close to zero projects the remaining modes to a
perfect two-mode cat state. Since h�0

�0
ð�Þj�0

�0
ð�Þi � 2, the

probability for this successful outcome is roughly 1=2.

Probabilistic entanglement swapping of two-mode cat
states is thus easy to implement. As we now demonstrate,
the swapping can be made nearly deterministic using aux-
iliary single-mode cat states as a resource. The setup is
shown in Fig. 1 III(b). Additional beam splitters are
inserted between the first beam splitter output and the X

measurement. At the jth beam splitter a cat state j�ð2j=2�Þi
is injected, and a P measurement with outcome pj is

performed in one output port. We can see what happens
by considering just one auxiliary state. When the output
from the first beam splitter is mixed with a single-mode cat

of amplitude
ffiffiffi

2
p

�, each of the ‘‘failure’’ outputs above can
combine with one term of the cat state to yield j0i. An
X outcome of zero then projects the output to an entangled
state. At the same time, the ‘‘success’’ output above splits
into j � �i, leading to two possible measurement out-
comes, each of which still produces the state j�0

�0
ð�Þi.

Formally, after the two P measurements the (unnormal-
ized) state is

j~�0
�1
ð�Þij0ix þ j�0

�0
ð�Þiðei�j�ix þ e�i�j � �ixÞ

þ j�þ�ij2�ix þ j��þij � 2�ix; (7)

where �1 ¼ �23=2�p1, � is an unimportant phase and
j~�0

�1
ð�Þi ¼ ei�1 j�þ�i þ e�i�1 j��þi equals j�0

�1
ð�Þi up to a

local phase shift. Assuming that j0i and j�i are nearly
orthogonal, X outcomes originating in the j0i or j � �i
terms of (7) all project the output to a two-mode cat state.
Only the extremal outcomes lead to failed swapping.
Counting terms, the success probability is 3=4.
Generalizing this to k auxiliary states, we find that the
success probability scales as 1� 2�k�1. Fixed distinguish-

ability of the terms requires � to scale as �� 2k=2. The
failure probability thus scales inversely with the mean
photon number �2 in the two-mode cats and the square
root of the mean photon number in the largest single-mode
cat. This result demonstrates that, given sufficiently large
cat-state resources, entanglement swapping using only
linear optics and homodyne measurements can be per-
formed with success probability arbitrarily close to 1.
We now turn to the assembly of all three steps—

entanglement generation I, II, and swapping III—into a
complete quantum repeater protocol. The goal is to estab-
lish a useful entangled state across some channel of length
L. To this end, the channel is divided into 2n segments of a
shorter length L0. Entanglement is generated in each seg-
ment separately and they are then connected by entangle-
ment swapping. We will consider only simple swapping
[Fig. 1 III(a)] with no auxiliary states, assuming that the
time required for local operations is much shorter than the
classical communication time L0=c, with c the speed of
light. The benchmark for the performance is the rate at
which final, entangled states can be generated over a dis-
tance L with a fixed fidelity with respect to some ideal tar-
get state. As in step II, one must choose a finite acceptance

FIG. 2 (color online). Generation of approximate cat states.
The fidelity-rate trade-off is plotted for perfect input states (dots)
and input with a 1% two-photon contribution (circles).
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range [� �, �] for the X measurements during swapping,
and for fixed L there will be a trade-off between rate and
fidelity through �, �, and p. The target state is approached
as �, �, p ! 0. In this limit, the entangled states before
swapping are given by jc miþjvaci�, where� stand for the
symmetric and antisymmetric combinations of spatial
modes a, b. Conditioning on zero in all X measure-
ments, we find that for sufficiently large m, up to two
P-space displacements which can be trivially canceled,
the wave function after n connections takes

the form Ŝþð 4knÞŜ�ð
kn
2 Þj�’n

ð�m=
ffiffiffiffiffiffiffiffi

2kn
p Þi. Here kn ¼

2
ffiffiffi

2
p

coth½2narccothð1= ffiffiffi

2
p Þ�, while ’n depends on the

P outcomes. Because kn converges fast towards 2
ffiffiffi

2
p

,

this state is essentially equivalent to Ŝað
ffiffiffi

2
p ÞŜbð

ffiffiffi

2
p Þj�’n

ð�m=2
5=4Þi. Our target is thus a squeezed, nonlocal cat

state. Note that the 1.5 dB squeezing in the final state is
local and can be locally undone.

We simulate the protocol stochastically, picking random
outcomes for all quadrature measurements. The rate as a
function of distance is maximized for a fixed final fidelity

of 90% with respect to Ŝað
ffiffiffi

2
p ÞŜbð

ffiffiffi

2
p Þj��’n

ð�m=2
5=4Þi. We

optimize over the ranges � and �, the number of genera-
tion and connection steps m, n, and the pair production
probability p. For runtime reasons we keep m � 3. We
take into account losses during entanglement generation,
assuming a fiber attenuation length of 20 km and an SPD
efficiency of 50%, and we take the source repetition time to
be given by the classical communication time L0=c. The
result is shown in Fig. 3. At 1000 km our protocol reaches a
rate of 0.1 pairs/minute. This is higher than the best pro-
posed atomic-ensemble-based repeaters in the discrete
variable regime for the same SPD efficiency. To reach
comparable rates, the discrete variable protocols require
high efficiency SPDs (* 90%), which unlike the efficient
homodyne detectors employed here are not readily avail-
able in the lab, or more complicated entanglement swap-
ping [23,24]. In addition, for repeaters based on linear
optics and SPD in the discrete variable regime, the success
probability for entanglement swapping can never exceed

1=2, whereas for the protocol presented here we have
demonstrated that near-deterministic swapping and hence
a much higher rate is possible when the swapping proce-
dure of Fig. 1 III(a) is replaced by that of III(b). An
analogous setup can also be used for near-deterministic
teleportation. Thus the hybrid approach represents a prom-
ising avenue for reaching higher rates for entanglement
distribution. Since our protocol uses only linear optics,
light storage and retrieval, and single-photon and homo-
dyne detectors, the means for a first experimental im-
plementation are available in today’s laboratories. An
interesting outlook might be to integrate the present
scheme with the two-mode cat generation of Ref. [8].
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