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An effective spin-orbit coupling can be generated in a cold atom system by engineering atom-light

interactions. In this Letter we study spin-1=2 and spin-1 Bose-Einstein condensates with Rashba spin-orbit

coupling, and find that the condensate wave function will develop nontrivial structures. From numerical

simulation we have identified two different phases. In one phase the ground state is a single plane wave,

and often we find the system splits into domains and an array of vortices plays the role of a domain wall. In

this phase, time-reversal symmetry is broken. In the other phase the condensate wave function is a

standing wave, and it forms a spin stripe. The transition between them is driven by interactions between

bosons. We also provide an analytical understanding of these results and determine the transition point

between the two phases.
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The interaction between a matter field and gauge field is
of central importance in quantum physics. Although atoms
are neutral and do not possess gauge coupling to a real
electromagnetic field, it has been proposed that a synthetic
gauge field originating from the Berry phase effect can be
coupled to atoms by engineering the interactions between
atoms and a spatially varying laser field [1]. Very recently,
this scheme has been successfully implemented in a Rb87

Bose-Einstein condensate (BEC) [2]. A straightforward
generalization of this scheme can also create a non-
Abelian gauge field to cold atoms [3–5]. This opens up a
new avenue in cold atom physics, that is to study how a
coherent matter wave responds to external gauge fields, in
particular, the non-Abelian gauge fields.

There are already various proposals to achieve a non-
Abelian gauge field. For instance, one can start with an
N-pod system, where N atomic internal states are coupled
to one common state byN different laser fields. It results in
N � 1 dark states which play a role as internal pseudospin
degrees of freedom [3–6]. Tripod (N ¼ 3) and tetrapod
(N ¼ 4) setup correspond to spin-1=2 and spin-1 case,
respectively. Among all possibly achieved configurations
of non-Abelian gauge fields A, one of the most simplest
cases with Ax ¼ �x and Ay ¼ �y is equivalent to a Rashba

type spin-orbit (SO) coupling [4,5]. Very recently,
BEC with SO coupling has been first realized by the
NIST group using a similar scheme described in
Refs. [2,6].

During the last few years, it has been extensively studied
that SO coupling in an electronic system can lead to a novel
state of matter of topological insulator which has many
exotic physical properties [7]. Nevertheless, so far only a
few papers have studied the SO effect in a boson conden-
sate [8,9]. This Letter is devoted to study the properties of
spin-1=2 and spin-1 condensate in the presence of a pure
Rashba SO coupling. The model under consideration is

Ĥ ¼ Ĥ0 þ Ĥint,

Ĥ 0 ¼
Z

d2r�y 1

2m
ðk2 þ 2�k � ~�Þ�; (1)

where � ¼ ð�";�#Þ for the spin-1=2 case and � ¼
ð�1;�0;��1Þ for the spin-1 case. Here, we consider a
quasi-two-dimensional situation and in-plane SO coupling
where k ¼ fkx; kyg and ~� ¼ f�x; �yg, where �x;y are the

spin-1=2 or spin-1 representation of Pauli matrices. For the
interaction term, we note that different pseudospin compo-
nents are in fact a superposition of atomic hyperfine states,
and therefore the interactions between them could have a
quite complicated form. However, as an initial effort to
understand this rich system, in this work we try to simplify
the situation by considering a simplified interaction form
borrowed from conventional spinor BEC, namely, for
spin-1=2,Hint ¼

R
d2rðg1n̂2" þ g2n̂

2
# þ 2g12n̂"n̂#Þ. We shall

also focus on the case with g1 ¼ g2 > 0 and then the

interaction can also be rewritten as Hint ¼
R
d2r

�
c0
2 n̂

2 þ
c2
2 Ŝ

2
z

�
, where n̂ ¼ n̂" þ n̂#, Ŝz ¼ n̂" � n̂#, and c0 ¼ g1 þ

g12 and c2 ¼ g1 � g12. The c0 term is SUð2Þ spin rota-
tional invariant while the c2 term breaks spin rotation
symmetry. For the spin-1 case, we shall consider the stan-

dard interaction form [10] Hint ¼
R
d2r

�
c0
2 n̂

2 þ c2
2 Ŝ

2
�
,

where n̂ ¼ n̂1 þ n̂0 þ n̂�1 and Ŝ ¼ �y
� ~�����. In both

cases, c0 > 0 and � ¼ c2=c0 can be either positive or
negative.
The main results of this Letter include the following:

(i) A boson condensation in the k ¼ 0 single-particle state
is always unstable in the presence of SO coupling. (ii) The
ground state has two possible phases: one is named the
‘‘plane wave phase’’ (PW), where the ground state is found
to be a single plane wave; the other is named the ‘‘standing
wave phase’’ (SW), where the spatial wave function of
each spin component forms an oscillating standing wave,
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as presented in Figs. 2 and 3. (iii) The transition between
the PW phase and the SW phase depends on the interac-
tions between bosons. For the spin-1=2 case, it is the PW
phase if � > 0 and the SW phase otherwise; while for the
spin-1 case, it is the PW phase if � < 0 and the SW phase
otherwise. (iv) We often find the long-lived metastable
state in which the system splits into two domains. In the
parameter regime of the PW phase, it is locally a plane
wave state with opposite wave vector in each domain, and
an equally spaced array of vortices plays the role as the
domain wall. We note, unlike BEC in a synthetic magnetic
field [2], the Hamiltonian for the non-Abelian gauge field
considered here preserves both time-reversal and trans-
lation symmetry, however, the ‘‘PW’’ phase spontaneously
breaks time-reversal symmetry, which is unconventional in
a bosonic system. Moreover, both phases spontaneously
break space-spin rotation symmetry. This behavior is fun-
damentally different from the effect of SO coupling in

electronic systems. We have also verified that other terms
not considered here, such as linear and quadratic Zeeman
field, the difference between g1 and g2, will only shift the
phase boundary between these two phases, and will not
affect the essence of the two phases, as long as their
strength is relatively not too strong.
Instability of a condensation on the k ¼ 0 state.—

Without SO coupling, the ground state of bosons is a
condensation in the k ¼ 0 state. Hence, the question arises
whether the SO coupling k � ~� will have any significant
effect on a BEC, in particular, if the SO coupling is weak.
Here let us take the spin-1=2 case as an example, and first

expand the boson field operator �y
�ðrÞ ¼ P

ke
ikrbyk�=

ffiffiffiffi
V

p
(V is the volume). If we still assume a boson condensation
in the k ¼ 0 state, i.e. hb�;k¼0i ¼ ��, the Bogoliubov

Hamiltonian can be written as ĤBg ¼
P

kB
y
kHkBk, where

By
k ¼ ðb̂y"k; b̂"�k; b̂

y
#k; b̂#�kÞ and

Hk ¼
�k" 2g1�

2
"

@�
m ðkx� ikyÞþ2g12�

�
"�# 2g12�"�#

2g1�
�2
" �k" 2g12�

�
"�

�
#

@�
m ð�kx� ikyÞþ2g12�

�
"�#

@�
m ðkxþ ikyÞþ2g12�"��

# 2g12�"�# �k# 2g2�
2
#

2g12�
�
"�

�
#

@�
m ð�kxþ ikyÞþ2g12�"��

# 2g2�
�2
# �k#

0
BBBB@

1
CCCCA;

where �k� ¼ k2=ð2mÞ þ 2g1j��j2. We then introduce a
generalized Bogoliubov transformation Bk ¼ �k

~Bk,
where ~By

k ¼ ð�̂y
"k; �̂"�k; �̂

y
#k; �̂#�kÞ, where �k is a 4� 4

matrix. To satisfy the commutation relation ½��k; �
y
�0k0 � ¼

���0�kk0 and ½��k; ��0k0 � ¼ 0, �k has to satisfy the rela-
tion �y

kA�k ¼ A, where A is a 4� 4 matrix

�z 0
0 �z

� �
:

Suppose Hk can be diagonalized by a �k, and the

diagonal values of�y
kHk�k are denoted by 	i. 	i satisfies

the equation Det½Hk � 	iA� ¼ 0, which gives two solu-
tions denoted by 	"k and 	#k. The Bogoliubov Hamiltonian

becomes ĤBg ¼
P

k;�	�k�
y
�k��k. We find that one exci-

tation branch always has a positive imaginary part in a
large regime in momentum space, even for infinitesimal
small SO coupling. Therefore, suppose a BEC is initially
prepared in the k ¼ 0 state, as SO coupling is turned on,
some modes will exponentially grow. Therefore, a conven-
tional BEC on the k ¼ 0 mode is unstable with SO cou-
pling, raising the question of what is the actual ground state
of a spinor BEC with SO coupling.

In addition, we note that the spectrum shown in Fig. 1
breaks spatial rotation symmetry. This is also an effect of
SO coupling. Since the Hamiltonian of Eq. (1) only pos-
sesses a symmetry of simultaneous rotation of both spin
and space, namely kx þ iky ! ei
ðkx þ ikyÞ and �x �
i�y ! e�i
ð�x � i�yÞ. However, the Bose condensation

locks the relative phase between different spin components

and therefore breaks spin rotation symmetry. Conse-
quently, this symmetry breaking manifests itself in real
space.
Numerical simulation for the spin-1=2 case.—We imple-

ment the mean-field approximation and numerically look
for the condensate wave function that can minimize Gross-
Pitaevskii energy using the imaginary time evolution
method. For the spin-1=2 case the Gross-Pitaevskii energy
is written as

E ¼
Z

d2r

( X
�¼";#

’�
�

�
� @

2

2m
r2 þ 1

2
m!2r2

�
’�

þ @�

m
½’�

" ð�i@x � @yÞ’# þ ’�
# ð�i@x þ @yÞ’"�

þ c0
2
ðj’"j2 þ j’#j2Þ2 þ c2

2
ðj’"j2 � j’#j2Þ2

)
: (2)

FIG. 1 (color online). An example of real (a) and imaginary
(b) part of unstable branch of excitation spectrum with SO
coupling.
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What we find are shown in Fig. 2. For � ¼ c2=c0 > 0, the
densities of both component have no particular structure,
while the phase of both components behave as a plane
wave, as shown in Figs. 2(a1) and 2(a2) and named as the
PW phase. Time-reversal symmetry is broken in this phase.
For � < 0, the wave functions of both components behave
as standing waves and lead to periodic density modulation
of both components, as shown in Figs. 2(b1) and 2(b2) and
named as the SW phase. Time-reversal symmetry is pre-
served. Moreover, the higher density regime of the spin-up
component coincides with the lower density regime of the
spin-down component, which represents a microscopic
phase separation, and also represents a spin stripe state.

Though, in the numerical simulation, we have included a
very weak harmonic trap which helps to avoid artifact from
a sharp boundary and also simulates the practical situation
in cold atom experiment, the results can be understood
from a homogeneous case. With SO coupling, the single-
particle spectrum becomes E�k ¼ ð@2k2 � 2�@jkjÞ=ð2mÞ,
where � denotes different helicity (spin parallel or anti-
parallel to wave vector). The single-particle ground state is
in the negative helicity branch with jkj ¼ �=@, and the
wave function is given by

�k ¼ 1ffiffiffi
2

p eikr
1

�ei’k

� �
; (3)

where’k ¼ argðkx þ ikyÞ and’�k ¼ ’k þ �. Let us first

consider a simple case that assumes the condensate wave
function is a superposition of two opposite wave vector
states as

’ ¼ ’"
’#

� �
¼ �1ffiffiffi

2
p eikr

1
�ei’k

� �
þ �2ffiffiffi

2
p e�ikr 1

�ei’�k

� �
:

Using this ansatz to minimize the interaction energy, it

is easy to find, for c2 < 0, it favors �1 ¼ �2 ¼ 1=
ffiffiffi
2

p
,

therefore, ’" � coskr and ’# � i sinkr. While for c2> 0,
it favors the case �1 ¼ 1, �2 ¼ 0, or �1 ¼ 0, �2 ¼ 1,
namely, the wave function is a single plane wave.
The next question is whether there will be more than one

single k state, or a pair of fk;�kg states entering the
condensate wave function ’. In general, one shall assume
a superposition of all states in the degenerate circle

’ ¼
Z

d’k

�kffiffiffi
2

p eikr
1

�ei’k

� �
; (4)

where the amplitude of k is fixed at �=@ to minimize the
single-particle energy. For instance, if �k is independent of
the angle of k, one can obtain

’ ¼ 1ffiffiffi
2

p �J0ðjkjjrjÞ
i�J1ðjkjrjÞei


� �
; (5)

where 
 is the angle of r. This is a symmetric skyrmion
solution, which has also been proposed by Ref. [9].
However, if one substitutes the ansatz Eq. (4) into the
energy function Eq. (2) and minimizes the energy with
respect to all �k, we can find the most favorable solution is
always that �k is nonzero either for a single k or for a pair
of fk;�kg, and we do not find a parameter regime in which
the condensate wave function contains more than two wave
vector components.
Numerical simulation for the spin-1 case.—We now

move to study the spin-1 case, whose energy functional
is given by

E ¼
Z

d3r

( X
�¼1;0;�1

’�
�

�
� @

2

2m
r2 þ 1

2
m!2r2

�
’�

þ @�

m
½’�

1ð�i@x � @yÞ’0 þ ’�
0ð�i@x � @yÞ’�1

þ H:c:� þ c0
2
ðj’1j2 þ j’0j2 þ j’�1j2Þ2 þ c2

2

� ½ðj’1j2 � j’�1j2Þ2 þ 2j’�
1’0 þ ’�

0’�1j2�
)
: (6)

FIG. 2 (color online). Numerical results for the spin-1=2 case.
a1 and a2 show the phase of condensate wave function of both
spin-up (a1) and down (a2) component increase from �� (grey
regime) to � (dark regime) periodically in the PW regime; b1
and b2 show the density of both the spin-up (b1) and down (b2)
component oscillate periodically in the SW regime. � ¼
c2=c0 ¼ 0:4 for a1 and a2, and � ¼ 0:1 for b1 and b2.

FIG. 3 (color online). Numerical results for spin-1 case. a1–a3
are density of 1, 0, and �1 component in the SW regime; and
b1–b3 are phase of and b3 are 1, 0, and�1 component in the PW
regime. � ¼ c2=c0 ¼ 0:2 for a1–a3, and � ¼ �0:2 for b1–b3.
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The results from numerical simulation are displayed in
Fig. 3. As shown in Fig. 3, for � > 0 it is the SW phase
and for � < 0 it is the PW phase.

The result of spin-1 can be understood with similar
analysis above. The wave function for the single-particle
ground state is now

�k ¼ 1

2

1
� ffiffiffi

2
p

ei’k

ei2’k

0
@

1
Aeikr: (7)

We shall also consider a superposition as �1�k þ �2��k.

The c0 term is independent of �1;2, however, for �1 ¼
�2 ¼ 1=

ffiffiffi
2

p
, hSi2 ¼ 0 and it is favored when c2 > 0. This

state is also a special case of the so-called ‘‘polar’’ or
‘‘nematic’’ phase in the discussion of spin-1 BEC [10];
while for�1 ¼ 0,�2 ¼ 1 or�1 ¼ 1,�2 ¼ 0, hSi2 ¼ 1 and
it is favored when c2 < 0. This is also called the ‘‘ferro-
magnetic’’ phase.

Domains and domain wall.—Our numerical simulation
also finds long-lived metastable states with domains. For
instance, if we start with a random initial configuration, in
most cases the imaginary time evolution leads to a state in
which the system often splits into two domains. In the PW
phase, the system is locally a single plane wave state in
each domain, and the wave vector is opposite between two
domains. This is very similar to the situation of ferromag-
netism, where one always finds a ferromagnetic state made
up with locally magnetized domains.

In the presence of domains, we find that both up and
down components of the condensate wave function contain
an array of vortices, as shown in Fig. 4(a). We have
checked that the vorticity of all vortices are the same,
and the vortices in different components locate alternately.
The vortex array plays the role as a domain wall. Consider
an array of vortices with the same vorticity, located at x ¼
nl and y ¼ 0, where n are integers, in a uniform superfluid

the gradient of the superfluid phase ~@
 at (x, y) is given by
@x
 ¼ 1

l

Pþ1
n¼�1 y=l=ððx=lþ nÞ2 þ ðy=lÞ2Þ and @y
 ¼

� 1
l

Pþ1
n¼�1ðx=lþ nÞ=ððx=lþ nÞ2 þ ðy=lÞ2Þ. ~@
 as a func-

tion of (x, y) is shown in Figs. 4(c) and 4(d). As one can
see, when jyj> l, @x
 ! �=l is a constant and @y
 ! 0.

Hence the system is locally a plane wave state. To mini-
mize the single-particle energy, one requires l ¼ �@=�;
namely, the vortex line density increases as the increase of
SO coupling.

Hence, we have established the conclusion (i–iv) sum-
marized above within a mean-field theory. In future studies
we will include quantum fluctuations. Due to the degener-
acy of the single-particle ground states, quantum fluctua-
tion, in particular, the fluctuation of rotationmode,may lead
to fragmentation. However, it is known that the fragmented
state is usually very fragile for a realistic systemwith a large
number of bosons and is not stable against external pertur-
bations. In this case, effects such as anisotropy of trapping
potential will break the spatial rotational symmetry and pin

the direction of planewave or density stripe, and prevent the
fluctuation of the rotation mode from restoring the symme-
try. Mean-field results become more stable and the predic-
tions of this work can be verified experimentally very soon.
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