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We investigate a network of integrate-and-fire neurons characterized by a distribution of spiking

frequencies. Upon increasing the coupling strength, the model exhibits a transition from an asynchronous

regime to a nontrivial collective behavior. Numerical simulations of large systems indicate that, at

variance with the Kuramoto model, (i) the macroscopic dynamics stays irregular and (ii) the microscopic

(single-neuron) evolution is linearly stable.
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The investigation of networks of oscillators can provide
new insight into the basic mechanism which underlies
brain functioning. In particular, the spontaneous onset of
a collective dynamics is an intriguing phenomenon that can
contribute to information transmission across different
brain areas. Given the large number N of neurons (oscil-
lators) present in a real brain, it is tempting to adopt a
statistical-mechanics point of view and thereby investigate
the behavior for N ! 1 (the so-called thermodynamic
limit). Three main setups are typically invoked [1]:
(i) sparse networks, characterized by a fixed number of
synaptic connections; (ii) networks where excitatory and
inhibitory inputs balance on average [2]; (iii) massively
connected networks, where the number of links is propor-
tional to N. In the first two cases, the spiking activity is
naturally accompanied by statistical fluctuations due to
either the finite number of input signals or the closeness
to the firing threshold. This behavior is coherent with the
experimental evidence of an irregular background activity
in the cerebral cortex [3].

In this Letter, we numerically show that an irregular
microscopic and macroscopic dynamics can generically
arise also in an inhibitory, globally coupled network.
More precisely, we consider a heterogeneous network of
pulse-coupled integrate-and-fire (IF) neurons [1], each
characterized by a different bare spiking frequency. This
setup is similar to that of the Kuramoto model (KM) [4],
where each single oscillator is identified by a phase vari-
able �. The analogy is so tight that it has even been shown
that the pulse-coupling mechanism characterizing IF neu-
rons reduces, in the weak coupling limit, to that of the KM,
the only difference being that the coupling function is not
purely sinusoidal [5]. It is therefore quite important to
clarify to what extent a network of IF neurons reproduces
the KM scenario for stronger coupling strengths, especially
by recalling that the KM is often invoked while testing new
ideas on the control of synchronization within neural con-
texts [6]. A similar setup, in the presence of excitatory
connnections, was analyzed in Ref. [7], where the effect of
heterogeneity on the stability of the fully synchronous

regime was investigated. Finally, in order to make the
model closer to a realistic setup, we include delay to
account for the finite propagation time of the electric
pulses.
Our strategy consists in studying the macroscopic col-

lective dynamics in the largeN limit, for different values of
the coupling strength g. In the KM, above a critical value of
the coupling strength, a subset of the oscillators mutually
synchronize, as signaled by a nonzero value of the order
parameter � ¼ jPN

j¼1 e
i�j=Nj. In this Letter we show that

IF neurons give rise to a similar but substantially different
scenario. First of all, the second largest Lyapunov expo-
nent is always negative [8], implying that the evolution
must eventually converge to a periodic orbit. On the other
hand, the study of relatively small networks shows that the
time needed to approach a periodic orbit is exponentially
long with the system size, implying that the ‘‘transient’’
extends over increasingly longer time scales. In other
words, this is an instance of stable chaos [9], a phenome-
non already observed in disordered networks of pulse
coupled oscillators [10–12] and whose generality in inhibi-
tory networks has been addressed in [11].
A second difference is that, at variance with the KM, the

coupling contributes also to slowing down the spiking
activity of the single neurons (a somehow similar mecha-
nism operates in ensembles of cold atoms [13]) and drives
a subset of neurons below the firing threshold—a phe-
nomenon reminiscent of oscillator death [14]. However,
the most striking difference concerns the above-threshold
regime, as the overall neural activity is not simply periodi-
cally modulated, but exhibits irregular, seemingly chaotic,
oscillations (still in the presence of a negative ‘‘micro-
scopic’’ second Lyapunov exponent). Nothing of this type
has been observed in the corresponding setup of a KMwith
delayed coupling [15].
The evolution equations for the N membrane potentials

vi write,

_v i ¼ ai � vi � g

N

X

njtn<t

Si;lðnÞ�ðt� tn � tdÞ (1)
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where all variables are expressed in adimensional
units. When vi reaches the threshold vi ¼ 1, it is instanta-
neously reset to the value vi ¼ 0, while a spike is emitted
(and received with a delay td). The network is assumed
to be heterogeneous, in that different neurons are exposed
to different suprathreshold currents ai; ð�0Þi ¼ 1=
ln½ai=ðai � 1Þ� is the bare spiking frequency. Si;l denotes
the connectivity matrix and the sum in Eq. (1) runs over the
spikes received by the neuron i. Finally, the coupling
strength g is our control parameter: the negative sign in
front of last term in the r.h.s. means that we assume
inhibitory coupling. Notice also that the same last term
does not only couple the oscillators but modifies also their
frequency.

All the simulations reported in this Letter refer to a
globally coupled network, i.e. Si;l ¼ 1 for any i, l, but we
have verified that the introduction of additional disorder
(by randomly removing a fixed fraction of connections)
does not substantially modify the overall scenario. The
delay is set everywhere equal to td ¼ 0:1, while the cur-
rents ai are randomly and uniformly distributed in the
interval ½1:2; 2:8�. These parameter values are consistent
with those selected in Ref. [12], where they have been
chosen on the basis of biological motivations. In order to
investigate the collective behavior, it is necessary to in-
troduce a suitable order parameter [16]. We do so by coarse
graining the spiking activity, dressing each spike with
a finite width and thereby constructing a smooth effective
field E. If we assume the pulse shape, pðtÞ :¼
�2t expð��tÞ (t > 0), the corresponding field E can be
generated by integrating the equation,

€Eþ 2� _Eþ �2E ¼ �2

N

X

njtn<t

�ðt� tn � tdÞ: (2)

This procedure is often used to determine the field actually
seen by the single neurons [17]; here it is just a strategy to
construct a meaningful order parameter, that is defined as
the standard deviation � of E (�2 ¼ hE2it � hEi2t , where
h�it denotes a time average). We choose � ¼ 20, a value
that corresponds to sufficiently broad pulses to get rid of
the statistical fluctuations, but not so large as to wash out
the time evolution. As long as the asymptotic regime is an
asynchronous state characterized by a constant activity,
� is zero in the infinite N limit, while any form of collec-
tive dynamics gives rise to a nonzero �. This is precisely
what is seen in Fig. 1, where � is plotted versus the
coupling strength g for different network sizes. Below
gc � 0:5, � is quite small and appears to decrease as

1=
ffiffiffiffi
N

p
with the system size (see the left inset), indicating

that the deviation from zero is a finite-size effect. Above
gc, � starts to grow and is independent of the system size,
suggesting the onset of some form of synchronization (the
right inset contains an instance of the field evolution for
g ¼ 5). Superficially, this scenario is reminiscent of the
synchronization transition observed in the KM. In the

following we show that there are several conceptually
relevant differences. The first difference concerns the mi-
croscopic (single-neuron) behavior. The maximum
Lyapunov exponent, �, of the Poincaré map (to get rid of
the first zero Lyapunov exponent) is negative both below
and above the transition and does not depend onN for large
system sizes [18]. Altogether, the stable microscopic dy-
namics observed in this setup contrasts with the weakly
unstable dynamics observed in the KM, where the maxi-
mum Lyapunov exponent is positive, though scales as 1=N
[19]. On the other hand, the transient time Tr needed for a
generic trajectory to converge to some periodic orbit grows
exponentially with N. This is illustrated in Fig. 2, where
the average �Tr (over more than 100 realizations of the
disorder) is plotted for different coupling strengths.
There, one can also appreciate that the exponential growth
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FIG. 1 (color online). Standard deviation, �, of the effective
field E as a function of the coupling strength g for N ¼ 5750,
(red) squares, N ¼ 11 500, (black) triangles, and N ¼ 46 000,
(green) circles. The upper inset contains the rescaled standard
deviation. The lower inset contains an instance of the time
evolution of E for g ¼ 5 and N ¼ 5750.
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FIG. 2 (color online). Average transient length �Tr as a function
of N for g ¼ 0:3, 0.7, 1.3, 3, and 5 (diamonds, circles, triangles,
squares, and plusses, respectively). The (red) dashed lines are
exponential fits.
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rate decreases systematically with increasing g. Therefore,
for large N, the relevant dynamical regime is represented
by the transient dynamics, rather than by the periodic orbit
approached over astronomical time scales. This stable
chaos scenario was first observed in the absence of delay
[10] for networks of identical oscillators, when disorder in
the connectivity matrix is included. Its occurrence in the
presence of delay depends crucially on the balance be-
tween the amplitude of the effective disorder in the con-
nections and the stability of clustered states. Whenever
local fluctuations decrease with N, the transient length
does not only stops growing exponentially, but even de-
creases, since generic trajectories rapidly approach one of
the clustered states [20]. At variance with the previously
considered setups [11,12], the disorder induced by the
heterogeneity of the currents, survives in the thermody-
namic limit. Accordingly, the exponential growth of the
transient length is expected to persist for arbitrarily largeN
even in the absence of disorder in the connections. In fact,
we find no evidence of a convergence towards more co-
herent states.

The standard deviation � allows identifying the very
existence of collective fluctuations, but does not tell us
anything about their dynamical character. Up to g � 2,
simulations performed for increasing N suggest that the
field E behaves periodically in the thermodynamic limit.
On the other hand, the right inset in Fig. 1, which refers to
g ¼ 5, reveals a rather irregular behavior still for N ¼
46 000. A more accurate analysis is however necessary
before making any claim. As a first test, we construct a
return map by plotting the (nþ 1)-st maximum EMðnþ 1Þ
of the field versus the previous one. In Fig. 3, we see that
the points in the Poincaré section fill a broad and almost the
same area for both N ¼ 11 500 and 46 000. Such features
consistently indicate that the collective dynamics is char-
acterized by complex oscillations.

Next, we characterize the collective motion by comput-
ing the Fourier power spectrum Sð�Þ of the field E.
The spectra reported in Fig. 4 reveal several broad peaks
whose width does not appear to decrease for increasing N.
This confirms that the irregularity of the collective dynam-
ics persists in networks of arbitrary size and therefore

differs from the periodic oscillations reported, e.g., in
Refs. [21,22].
In order to shed further light on the system evolution, we

have analyzed the single-neuron behavior too. In Fig. 5, the
spiking frequency � (defined as the inverse of the average
interspike interval—ISI) of the single neurons is plotted
versus the bare frequency �0 2 ½0:558; 2:26� (again for
g ¼ 5). The effective frequency is systematically smaller
than �0; this is because the inhibitory coupling lessens the
neural activity. In fact, inhibition is so strong, as to bring
the least active neurons below threshold: neurons with
�0< � 1:56 do not fire at all, and thus do not actively
contribute to the network dynamics: they are just slaved by
the other degrees of freedom.
The appearance of plateaux (the widest ones corre-

sponding to harmonics of the frequency � ¼ 0:23) reveals
that neurons with similar bare frequencies lock together, as
it is naturally expected for periodically forced oscillators
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FIG. 3. Return maps for the maxima of the effective field E
when g ¼ 5 for N ¼ 11 500 (a) and N ¼ 46 000 (b).
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FIG. 4 (color online). Power spectrum Sð�Þ of the effective
field for N ¼ 5750, (dotted line) 11 500 (dashed line) and 46 000
(solid line). The spectra have been obtained by Fourier trans-
forming a signal of temporal length � 49 300. The arrows point
to the frequencies identified in Fig. 5.
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FIG. 5 (color online). Average spiking frequency of the oscil-
lators as a function of the bare frequency (ranging in the interval
½0:558; 2:26�), for g ¼ 5 and N ¼ 46 000 neurons (red solid
line). The thin horizontal lines are located at multiples of � ¼
0:23. The shaded area identifies the region covered by frequency
fluctuations (see the text for further details).
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(see the phenomenon of Arnold tongues). However, in this
case, the forcing field is not periodic: the shaded region
around the curve �ð�0Þ highlights the fluctuations of the
spiking frequency (half of the vertical width correspond to
3 standard deviations of �). We have verified that such a
width does not vanish upon increasing N, while the neu-
rons within the same plateau are frequency locked but not
phase locked. It is tempting to trace back the irregular
collective motion to the presence of neurons that are nearly
at threshold, whose activity is quite sporadic. However, we
have verified that the overall evolution is almost unchanged
when such neurons (and those which do not spike at all) are
removed from the outset. The appearance of discretized
frequencies has been observed also in chaotic delay
coupled oscillators [23].

All of our numerical simulations suggest that the irregu-
larity of the collective dynamics persists for N ! 1. It is
important to realize that this scenario is a priori legitimate,
since the dynamics is ruled, in the thermodynamic limit, by
a suitable nonlinear functional equation. In this case, the
relevant object is the probability density Pðv; �0; tÞ for the
membrane potential of the neurons, whose bare spiking
frequency lies in the interval ½�0; �0 þ d�0� to belong to
the interval ½v; vþ dv� at time t. As functional equations
involve infinitely many degrees of freedom, one can, in
principle, expect an arbitrary degree of dynamical com-
plexity. In models such as the networks considered in [2],
the corresponding probability density is a Gaussian and it
is therefore described by just two variables. As a result, in
that context one cannot observe anything more complex
than periodic oscillations. In the standard KM it has been
proved that not even periodic oscillations can arise; a
periodic collective motion can be observed only by invok-
ing a more complicate nonlinear dependence on the order
parameter [24]. On the other hand, it has been conjectured
that the collective dynamics is infinite dimensional in
globally coupled logistic maps [25]. The presence of
many active modes appears to be associated to the singular
structure of the invariant measure, which, in the context of
this Letter, has a further reason to be so because of the lack
of microscopic chaos.

Altogether, we have shown that heterogeneity may
induce irregular collective oscillations even in simple net-
works of one-dimensional phase oscillators. This mecha-
nism may contribute to the background irregular activity
observed in the cerebral cortex. Characterizing this behav-
ior and understanding the conditions for its onset remains
an open problem.
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