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Time-dependent lattice fluctuations of an optically excited strongly confined quantum dot are inves-

tigated with the aim to analyze the characteristics commonly used for identifying the presence of squeezed

phonon states. It is demonstrated that the appearance of fluctuations oscillating with twice the phonon

frequency, commonly regarded as a clear indication of squeezed states, cannot be considered as such. The

source of the discrepancy with earlier investigations is discussed. Conditions for generating a squeezed

state by using a two-pulse excitation are analyzed.
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Fluctuation properties of quantized systems strongly
deviate from those of classical systems. On the one hand,
Heisenberg’s uncertainty relation establishes a lower limit
on the product of fluctuations of conjugate variables such
as position and momentum or the quadrature components
of an electromagnetic field. On the other hand there are
quantum states—the squeezed states—in which the fluctu-
ations of one of these variables may be considerably re-
duced below their zero-point value. Squeezed states of
light have been extensively studied in quantum optics
both experimentally and theoretically [1–3]. They are at-
tractive for applications such as quantum teleportation [4]
or quantum-enhanced gravitational wave detection [5].
The concept of squeezed states is, however, not restricted
to photons and squeezing has been studied also in other
systems like atomic Bose-Einstein condensates [6], surface
plasmons [7], or magnons [8]. In addition, there has been a
growing interest in squeezing in the case of quantized
lattice vibrations, i.e., phonons. To this end fluctuations
of lattice displacements (FLDs) have been analyzed ex-
perimentally in many solid state systems including metals
and semimetals like Bi [9,10] and Sb [11], perovskite
materials like KTaO3 [12,13] or SrTiO3 [14], semiconduc-
tors like GaAs [9], as well as high-TC superconductors
[15]. Although these systems are very different it is com-
monly found that the FLDs exhibit modulations with both
the single and the double phonon frequency. A character-
istic phonon frequency may arise, e.g., from the confine-
ment of an acoustic mode, from a van Hove singularity in
the phonon density of states, or from the excitation of a
nearly dispersionless longitudinal optical (LO) phonon
mode. Note that no matter which types of phonons are
involved the FLDs are time independent both for a thermal
as well as for a coherent state. In contrast, a system in a
squeezed state fluctuates at twice the phonon frequency.
Thus, the observation of double phonon frequency oscil-
lations in the FLDs has often been taken as an evidence for
phonon squeezing [9–11,14].

In this Letter we study theoretically the fluctuation
properties of lattice displacements caused by ultra-
fast optical excitations of a quantum dot (QD). From the
experiments in Refs. [9–15] it is evident that the occur-
rence of single and double phonon frequency modulations
of FLDs is a generic feature which does not critically
depend on details of the electronic system. This suggests
that also a simple electronic system, such as the QD studied
here, should be able to capture the essential aspects of
the fluctuation dynamics. We can thus benefit from the
fact that for ultrafast excitations all dynamical variables
may be evaluated analytically in our model without further
approximations [16]. Our main conclusion will be that
in contrast to a widespread belief the occurrence of
double phonon frequency modulations of the fluctuations
is not a sufficient criterion to unambiguously indicate
the presence of squeezing. Squeezed states appear
only in special cases, in particular, when a sequence
of ultrashort pulses with selected phases excites
the dot.
We consider a resonant ultrafast excitation of the lowest

QD exciton. Assuming circularly polarized laser pulses
and a sufficiently strong confinement of the QD states the
electronic degrees of freedom may be restricted to an
effective two-level system consisting of the crystal ground
state jgi and the single exciton state jxi. The coupling to
the light field is described within the usual dipole and
rotating wave approximation. Since phonon-induced
transitions to higher states or across the band gap can be
neglected because of the strong energy mismatch, the
coupling to phonons is typically dominated by pure de-
phasing type interactions as described by the independent
Boson model. Corresponding calculations accounting for
acoustic phonons were indeed able to quantitatively repro-
duce the measured polarization decay on short times [17].
The coupling to optical phonons gives rise to discrete
phonon side bands in absorption or luminescence spectra
[18]. Here we will concentrate on the quantum state
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of LO phonons coupled to the exciton via the Fröhlich
interaction. The corresponding Hamiltonian reads

Ĥ ¼ @

�
�þX

q

ðgqb̂q þ g�qb̂yqÞ
�
jxihxj

þ @!LO

X
q

b̂yqb̂q � P̂ �E; (1)

where @� is the exciton energy, b̂q (b̂yq) are annihilation

(creation) operators of a LO phonon with wave vector q, gq
describes the exciton-phonon coupling, E is the laser field,

and P̂ ¼ M0jxihgj þM�
0jgihxj is the operator for the elec-

tronic polarization with the transition dipole matrix ele-
ment M0. We use parameters typical for a spherical
InGaAs QD of 5 nm diameter and parametrize the cou-
plings gq as in Ref. [16]. Although the pulse spectra should

be sufficiently narrow to avoid excitations of higher elec-
tronic states, they still can be broad enough to cover the
relevant phonon sidebands. This is the limit of ultrafast
excitation, in which the calculations can be simplified by
modeling the laser field as a sequence of �-shaped pulses
with pulse areas Aj and phases �j arriving at times tj.

The operator for the displacement associated with LO
phonons is given by

ûðr; tÞ ¼ �i
u0ffiffiffiffi
N

p X
q

q

q
ðb̂qeiq�r � b̂yqe�iq�rÞ; (2)

where u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ð2Mr!LOÞ

p
, Mr is the reduced mass of

the lattice ions, and N denotes the number of unit
cells. FLDs are described by the variance ð�uðr; tÞÞ2 ¼
hûðr; tÞ � ûðr; tÞi � hûðr; tÞi2. In a thermal state at tempera-
ture T this variance is given by ð�uÞ2th ¼ u20ð2nLO þ 1Þ,
where nLO ¼ ½expð@!LO=kBTÞ � 1��1 is the Bose distri-
bution. The results are most easily interpreted by consid-
ering the normalized deviation from the thermal value,
Su ¼ ½ð�uÞ2 � ð�uÞ2th�=u20. In the literature often a reduc-

tion below the thermal limit, corresponding to negative
values of Su, is referred to as squeezing. Vacuum squeezing
refers to a reduction below the vacuum limit. The evalu-
ation of Su under nonequilibrium conditions requires the

evaluation of the time-dependent values of hbqi, hbyqbq0 i,
and hbqbq0 i. For a QD driven by ultrafast pulses all these

quantities can be obtained analytically by using a generat-
ing function formalism [16,19].

We start by considering a QD excited by a single pulse
arriving at time t1 ¼ 0with pulse area A1 ¼ A. This case is
most instructive due to its simplicity and yields

Su ¼ �ðtÞjIðrÞj2½cosð!LOtÞ � 1�2sin2ðAÞ (3)

with IðrÞ ¼ � iffiffiffi
N

p P
q
q�r
qr

g�q
!LO

eiq�r. Obviously, Su vanishes if
A ¼ n�, n being an integer. For all other pulse areas Su is
always positive, which implies that the fluctuations never
fall below the thermal limit. This also holds for the fluctu-
ations of the momentum. Thus, within our model a single

pulse excitation never gives rise to phonon squeezing.
Nevertheless, the fluctuations exhibit oscillations at fre-
quencies !LO and also at 2!LO. This demonstrates that a
2!LO modulation is clearly not sufficient to conclude that
the system is in a squeezed state.
These results can be understood by looking at the quan-

tum states of the phonons. The electron-phonon coupling
in Eq. (1) describes the fact that the equilibrium position of
the ions is shifted when the QD is in the excited state. A
sudden excitation by a pulse with A ¼ ð2nþ 1Þ� drives
the QD into the upper state transforming the phonon
ground state into a coherent state oscillating around the
shifted equilibrium position. For a pulse with A ¼ 2n�
there is no excitation at all and the lattice remains in its
ground state. In both cases Su ¼ 0. For all other pulse areas
exciton and phonons become entangled. For the phonon
system this corresponds to a statistical mixture of the
ground state and a coherent state oscillating around a
shifted equilibrium. The FLDs of such a mixture are time
dependent, but never fall below those of the ground or the
coherent state alone [20].
It is interesting to compare these findings with results

derived from Raman tensor models, which are widely used
to interpret temporal modulations of FLDs [12,14,22,23].
There the electronic degrees of freedom are effectively
eliminated by performing a twofold expansion of the opti-
cal polarization [24]: First it is linearized with respect to
the laser field; second it is expanded with respect to the
lattice displacements usually up to second order. The result
is an effective Hamiltonian for the light-induced phonon
dynamics characterized by a direct instantaneous coupling
of the field intensity to linear and quadratic contributions in
the phonon operators. For an impulsive excitation by a
single ultrafast pulse such Raman tensor models predict
the generation of a squeezed phonon state whenever the
second order Raman tensor is nonvanishing [22,23].
Likewise, FLDs oscillate with the frequency 2!LO only
when the second order Raman tensor is nonzero. Thus, in
clear contrast to our result, within a second order Raman
tensor model there can never arise a situation where FLDs
are modulated with twice the phonon frequency without
simultaneously exhibiting squeezing. On the contrary, in
the model defined in Eq. (1) the laser field couples only
indirectly to phonons: first an exciton is excited which then
couples to the phonons. This indirect coupling leads to
memory effects and results in an entanglement between
exciton and phonon systems. The neglect of memory and
entanglement effects—implicitly made in the derivation of
the Raman tensor model—however, becomes questionable
in the regime of ultrafast dynamics. Indeed, we find that in
this regime our model, where such approximations have
not been made, behaves qualitatively different from a
corresponding Raman tensor model.
The situation becomes much richer when the QD is

excited by a sequence of two ultrashort pulses arriving at
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times t1 ¼ �� and t2 ¼ 0. Also in this case we obtain
explicit analytical expressions for Su. It turns out that Su
again can be written in the form Su ¼ jIðrÞj2 ~Su, where all
spatial dependencies are contained in the factor jIðrÞj2
defined above. The general expressions for ~Su are rather
lengthy and will not be given here. Instead we consider the
special case of two pulses with equal pulse areas A1 ¼
A2 ¼ �=2 and a delay time � ¼ tLO=2 ¼ �=!LO, for
which the general expression simplifies considerably.
We find at temperature T ¼ 0

~Su ¼ 4sin4
�
!LOt

2

�
½1� B2cos2ð�Þ� þ 4cos2ð!LOtÞ

þ 8B sinð�Þsin2
�
!LOt

2

�
sinð!LOtÞ; (4)

where � ¼ �2 ��1 � ~�� is the total phase difference

between the pulses, ~� is the polaron-shifted exciton en-
ergy, and B ¼ expð�2

P
qjgq=!LOj2Þ< 1. We note that the

sum of the first two terms in Eq. (4) is non-negative and
thus there is again no squeezing when the last term van-
ishes. This is the case for � ¼ n�. However, as in the
single pulse case, the second harmonic is always present.

In contrast to the single pulse case now negative values

of ~Su are possible. From Eq. (4) we expect the largest
negative contributions around � ¼ ð2nþ 1Þ�=2.
Figure 1 shows the time dependence of ~Su at � ¼ 0 and
� ¼ �=2. The inset shows the spectral weights of the first

and second harmonics. At � ¼ 0 the function ~Su indeed
oscillates essentially only at twice the phonon frequency
and is non-negative for all times indicating the absence of
squeezing. In contrast, at � ¼ �=2 oscillations with both
the single and double phonon frequency occur with similar
weights. Even more important, now squeezing takes place

as can be seen from the negative values of ~Su during
specific time intervals.

Let us look again at the quantum states created by the
pulses. As discussed above, the first pulse creates an en-
tangled equal superposition of jgi with phonon vacuum

and jxi with phonons in coherent states. Starting from each
of these states the second pulse again creates superposi-
tions between the QD states jgi and jxi. This leads to an
entangled electron-phonon state where in general both in
the QD ground and excited state subspace the phonons
are in a superposition of two coherent states with relative
phases depending on the delay time � and phase difference
� of the pulses. Such superpositions of coherent states
are generally called ‘‘cat states’’ and it is known from
quantum optics that indeed such cat states may exhibit
squeezing [25].
To explore the conditions which are favorable for

squeezing we have plotted in Fig. 2(a) the minimum ~Smin

of ~Su with respect to the real time t as a function of� and �
at fixed pulse areas A1;2 ¼ �=2. Indeed, from the full

analytical formula it can be deduced that no squeezing
is possible if at least one of the pulses has a pulse area of
n�, since in this case no cat states are produced, and that
the maximal squeezing is expected for A1;2 ¼ ðnþ 1

2Þ�.
Figure 2(a) shows that Smin is minimal for � ¼
ð2nþ 1Þ�=2 and at � � tLO=2. Thus, the simplified
expression Eq. (4) obtained for � ¼ tLO=2 corresponds to
a parameter range which is highly favorable for squeezing.
So far we have considered values of gq typical for self-

assembled InGaAs-type QDs. To learn more about the
influence of the exciton-phonon coupling strength on
squeezing we have scaled gq by a factor f. Stronger

couplings appear either in QDs made of stronger polar
materials or in structures with a stronger separation be-
tween electron and hole wave functions such as QDs in the
presence of an electric field [26] or in core-shell QDs [27].
The prefactor jIðrÞj2 of Su scales with f2 and thus

the normalized variance Su scales as f2 ~Su. Therefore, in

Fig. 2(b) we have plotted f2 ~Smin as a function of � and f at
A1 ¼ A2 ¼ �=2 and � ¼ �=2. We find that with increas-
ing exciton-phonon coupling the amount of squeezing first
increases, then reaches a maximum around f � 20, and for
higher coupling strengths decreases again. The initial in-
crease is related to the fact that for f ¼ 0 there is no
excitation of phonons at all and thus Su ¼ 0. With increas-
ing coupling phonons are generated and, in agreement with
our previous findings, these phonons exhibit squeezing
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FIG. 1 (color online). Scaled deviation of lattice fluctuations
from their thermal value ~Su (see text) at T ¼ 0 of a QD excited
by two pulses with phase difference � ¼ 0 or � ¼ �=2 and
delay time � ¼ �=!LO. The inset shows the spectral weights of
the oscillations with ! ¼ !LO and ! ¼ 2!LO.
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FIG. 2 (color online). (a) Minimum of ~Su vs phase� and delay
time � at A1 ¼ A2 ¼ �=2; (b) Minimum of f2 ~Su vs delay time �
and the strength of the exciton-phonon coupling (i.e., the factor f
that scales gq), at A1;2 ¼ �=2 and � ¼ �=2.
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which is most pronounced at delay times � � tLO=2. The
subsequent decrease of the squeezing results from the
decrease of the prefactor B entering in the last term of
Eq. (4) which is the only term that may give a negative
contribution to Su.

To further elucidate the relation between squeezing and
spectral properties of FLDs we have plotted in Fig. 3 the
spectral weights of the !LO and 2!LO components of Su
versus� and � at A1 ¼ A2 ¼ �=2. It is seen that the 2!LO

component is strongest slightly above � ¼ tLO=2 for � ¼
�=2 and slightly below � ¼ tLO=2 for � ¼ 3�=2, which
coincides with parameter ranges where the squeezing is
strongest [cf. Fig. 2(a)]. In contrast, the single phonon
component is largest below � ¼ tLO=2 for � ¼ �=2 and
above � ¼ tLO=2 for � ¼ 3�=2. Even though the occur-
rence of double phonon frequency oscillations in FLDs is
not sufficient to indicate squeezing we do find a correlation
between these two properties: the squeezing effect is typi-
cally strongest when the 2!LO oscillations of the FLDs
have the largest amplitudes.

Up to now we have considered the case of zero tempera-
ture. At finite temperature T the thermal background in-
creases above the vacuum level. Furthermore, in the two-
pulse case there is an additional temperature dependence in
~Su which, however, at low T is of minor importance. To
determine the T range where vacuum squeezing is possible
we have estimated the temperature where the increase in
thermal fluctuations compensates the squeezing of the gen-
erated phonons. We find that for our parameters this occurs
at about 20 K. Thus, we expect that below this temperature
the FLDs indeed may exhibit vacuum squeezing.

In conclusion, we have analyzed the dynamical and
spectral properties of nonequilibrium lattice fluctuations
using a model of an optically excited QD coupled to LO
phonons. The fluctuations exhibit quite generally oscilla-
tions with both the single and double phonon frequency,
which is a most prominent feature that is found almost
universally in experiments performed on large classes of
materials. For an excitation with a single ultrafast pulse the
fluctuations never fall below their thermal values demon-
strating that there is no strict relation between the appear-
ance of fluctuations with double phonon frequencies and

squeezing. This finding is in contrast to calculations using
Raman tensor models which suggest that the detection of
double phonon frequency fluctuations is clear evidence for
squeezing. For two-pulse excitations squeezing is found
under specific excitation conditions due to the generation
of cat states. The squeezing is indeed strongest for parame-
ters where the fluctuations oscillate strongly with twice the
phonon frequency. However, also in this case there is no
one-to-one correspondence between squeezing and the
occurrence of double phonon frequencies in the lattice
fluctuations. Our studies should inspire new research to-
wards conclusive experiments to demonstrate squeezing in
a mechanical system like lattice vibrations.
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