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We study current-induced magnetization dynamics in a long thin ferromagnetic wire with a

Dzyaloshinskii-Moriya interaction (DMI). We find a spiral domain wall configuration of the magnetiza-

tion and obtain an analytical expression for the width of the domain wall as a function of the interaction

strengths. Our findings show that above a certain value of DMI a domain wall configuration cannot exist in

the wire. Below this value we determine the domain wall dynamics for small currents, and calculate the

drift velocity of the domain wall along the wire. We show that the DMI suppresses the minimum value of

current required to move the domain wall. Depending on its sign, the DMI increases or decreases the

domain wall drift velocity.
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Introduction.—A number of recent experiments, per-
formed in various metallic magnets, have shown the spiral
structure of magnetization due to Dzyaloshinskii-Moriya
interaction (DMI) [1–6]. In particular, the B20 structure of
ferromagnets, such as MnSi, which lacks strict space-
inversion symmetry, leads to a long-wavelength helical
twist in the magnetization [1]. Furthermore, the direct
space-time observation of the spiral structure by Lorentz
microscopy became possible for DMI-induced helimag-
nets [2,3]. Using spin-polarized scanning tunneling mi-
croscopy it has been shown that the magnetic order of 1
monolayer Mn on W(001) is a left-handed spiral [5] and
that the magnetic structure of the Fe double layer on
W(110) is a right-rotating spiral [4]. All of these spiral
states are the consequence of DMI.

A spin-polarized current flowing through such spiral
magnetic structures would exert a spin torque which could
be used for manipulations of the magnetization with po-
tential applications. For example, in magnetic memory
devices [7] the key issue is to manipulate the domain
wall (DW) configurations by means of magnetic fields
and/or spin-polarized current. Therefore, current-induced
dynamics of spiral magnets is an important subject of
technological relevance.

One of the most important factors which effects the
DW motion is pinning. The DW pinning can have an
‘‘extrinsic’’ and ‘‘intrinsic’’ nature. The extrinsic pinning
is due to surface roughness and other irregularities of the
wires which break translational invariance. On the other
hand, the intrinsic pinning is present even in ideally
smooth (translation invariant) nanowires. It depends on
the wire geometry and material parameters which can be
described by anisotropies. Although extrinsic pinning can
be significantly reduced in the near future with the help of
more sophisticated wire fabrication techniques, the intrin-
sic pinning is always present. Therefore, in this Letter

we concentrate on the more important case of DW
dynamics with the intrinsic pinning [8].
We determine the effect of a polarized current on the

magnetization configuration in the ferromagnetic wire with
both strong easy-axis anisotropy along its axis and weak
anisotropy in the plane transverse to the wire. The DMI,
which arises from spin-orbit scattering of electrons in non-
centrosymmetric magnetic materials is typically irrelevant
in bulk metals as their crystals are inversion symmetric.
However, in low-dimensional systems (such as atomic
layers and wires), which lack structural inversion symme-
try, the DMI in the presence of softened ferromagnetic
exchange coupling leads to the formation of the spiral
spin structures.
The main goal of this Letter is to study the influence of

DMI on the magnetization dynamics in ferromagnets. We
obtain the expression for the DW width as a function of the
DMI constant, uniaxial anisotropy along the wire, and
exchange interaction constant. We find that there is a
critical value of the DMI above which a DW configuration
cannot exist in the wire. This result can have an important
implication for the future experiments by setting a limit on
the devices with DMI which use DWs for information
manipulation. Below this critical value of DMI the DW
can propagate along the wire and rotate around its axis.
Any angle is equally favorable for the DW if there is no
anisotropy in the transverse plane. Generally speaking in
most wires there exists such an anisotropy due to the
asymmetry of the wire cross section. We show that it leads
to a chosen direction of the magnetization in the center of
the DW, so that the wall cannot rotate freely anymore.
Therefore, if a polarized current is passing through such
a wire, the DW will move if the current is larger than a
certain critical value [8]. This value corresponds to the
minimal torque needed to be pumped into the system to
rotate the spins of the DW around the wire’s axis.
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We investigate the dynamics of the DW in the small
transverse anisotropy regime. In particular, we find the drift
(average) velocity of the DW in the wire with DMI. Our
findings also show that DMI decreases the critical value of
current required to move a DW. To obtain all these results
for theDWdynamics, we use a universal method for finding
zero mode dynamics of spin textures. This method is
described in detail in the supplementary material [9].

Model.—We employ a simple theoretical model of a
ferromagnet with DMI and anisotropies which highlights
a new kind of behavior of DW structures. We consider a
Hamiltonian for a ferromagnet which has two terms
describing the isotropic exchange and Dzyaloshinskii-
Moriya interactions [10,11]. Without anisotropies in the
continuous limit this Hamiltonian takes the form,

H 0 ¼
Z

d3r

�
J0
2
ðrMÞ2 þD0M � ðr�MÞ

�
: (1)

Here M is a magnetization vector, J0 > 0 is exchange
interaction constant, and D0 is the DMI constant assuming
that the wire is cut or grown along the DMI vector [12]. We
study a ferromagnetic wire which is modeled as a one-
dimensional (1D) classical spin chain [13], where the wire
is along the z axis, see Fig. 1. For the thin long wire with
uniaxial anisotropy Hamiltonian (1) modifies to

H ¼
Z

dz

�
J

2
ð@SÞ2 þDS � ðez � @SÞ � �S2z

�
: (2)

Here ez is the unit vector in the z direction, @ ¼ @=@z,
and we introduced normalized magnetization vector
S ¼ M=M, so that S2 ¼ 1, D ¼ D0=ðAM2Þ, and J ¼
J0=ðAM2Þ, where A is the cross-sectional area of the
wire. The last term in Eq. (2) is due to uniaxial anisotropy
[with the anisotropy constant � ¼ �0=ðAM2Þ] which shows

that the system favors the magnetization along the wire.
Transverse anisotropy will be added below.
To study the magnetization dynamics we employ the

generalized Landau-Lifshitz-Gilbert equation [14,15] for
1D wire with current j along the wire [16]:

_S ¼ S�He � j@Sþ �jS� @Sþ �S� _S; (3)

where He ¼ �H =�S, _S ¼ dS=dt, � ¼ �0=M
2 and �0 is

the Gilbert damping constant, � ¼ �0=M
2 and �0 is the

constant of nonadiabatic current term, time is measured in
the units of the gyromagnetic ratio �0 ¼ gjej=ð2mcÞ, and
the current j > 0 is measured in units of a3=ð2eM�0Þ
where a is the lattice constant. Generally speaking one
also has to specify the boundary conditions for Eq. (3).
A general solution of the one-dimensional LLG equation

(3) can always be presented in the form

@S ¼ �ðz; tÞez � Sþ�ðz; tÞS� ½ez � S�; (4)

where � and� are in general two independent functions of
z and t; it also follows that @Sz ¼ �ð1� S2zÞ.
Zero current.—First we consider the simplest case of

zero current (j ¼ 0) and look for a time-independent
magnetization configuration. This means that we need to
minimize Hamiltonian (2), which can be written up to a
constant in the form

H ¼
Z

dz

�
J

2

�
@S�D

J
ez � S

�
2 þ

�
��D2

2J

�
ð1� S2zÞ

�
:

(5)

The spin configuration depends on the sign of ��D2=2J.
For 2J� <D2 the minimum of the second term is at

Sz ¼ 0. The first term is minimized by the condition @S ¼
D
J ez � S, so that the solution is a spiral,

S ¼½cosð�zþ�0Þ;sinð�zþ�0Þ;0�T; �¼D=J: (6)

The ground state is thus unique and there is no DW
configuration. Therefore, for the wires with weak enough
uniaxial anisotropy and/or exchange constant the spiral
magnetization state can prevent the formation of DWs.
For 2J� >D2 the minimum of the second term is at

Sz ¼ �1. This also minimizes the first term in Eq. (5).
Thus, Sz ¼ �1 are the two solutions, and a DW can exist
in the wire as a transition from one solution to another.
Below we study the statics and dynamics of such a DW

in the wire, and therefore we concentrate on the case
2J� > D2. Then the boundary conditions for Eq. (3) are
Sz ! �1 at z ! �1. To find the static configuration of
the DW we consider the solution in the form (4).
Substituting it into Hamiltonian (5), we find

H ¼
Z

dz

�
J

2

�
��D

J

�
2 þ J

2
�2 þ ��D2

2J

�
ð1� S2zÞ:

The minimization of the first term sets � ¼ D=J, cf. Eq. (6).
Using parametrization Sz ¼ tanhfðzÞ, we obtain

FIG. 1 (color online). Sketch of the wire with magnetization
profile for a DW. � and K denote the anisotropies along and
transverse to the wire, respectively. The upper inset shows the
dependence of jc on the twist ��, Eq. (16); the lower inset
shows drift velocity Vd and variance hð�VÞ2iT (in arbitrary units)
vs current j; see Eqs. (18) and (19).
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H ¼ J

2

Z
dz

ð@fÞ2 þ ��2

cosh2f
; ��2 ¼ ��2

0 � �2; (7)

where �0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
J=2�

p
is the DW width in the absence of

DMI. The straightforward minimization of Eq. (7) gives
f ¼ z=� or � ¼ 1=�, and in components the solution
takes the form

Sx ¼ cos½�ðz� z0Þ þ��
cosh½ðz� z0Þ=�� ; (8a)

Sy ¼ sin½�ðz� z0Þ þ��
cosh½ðz� z0Þ=�� ; (8b)

Sz ¼ tanh½ðz� z0Þ=��; (8c)

where the angle� is the tilt of the DW, and z0 is its position
(both arbitrary). We see that 2�=� is the pitch of the spiral,
� is the width of the DW, and �� is thus the twist of the
DW. The z component of the magnetization (8) is the same
as that of a standard (without DMI) DW of width �. The
direction of the twist of the DW depends on the sign
of DMI and can be either clock or counterclockwise. For
� ¼ 0 the DW is coplanar (of Néel type).

Both � and � have the same functional dependencies in
terms of J0, D0, and �0 as in terms of J, D, and �.
According to its definition in Eq. (7), � becomes infinite
in the limit 2J� ¼ D2 and DW cannot be sustained in the

wire. The energy of the DW is E ¼ 2J=� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J��D2

p
.

It vanishes when D2 approaches 2J�.
Parameters z0 and � in Eq. (8) correspond to two

zero modes of the system. These modes are the most
relevant if the system is perturbed. The time-dependent
solution then can be represented in the form of a moving
and rotating DW plus a small correction to its shape. The
requirement that the correction remains small during the
motion leads to the equations for the velocity and angular
velocity of the DW. A detailed derivation of these equations
is presented in the supplementary material [12]. Below we
present the results and discuss their implications.

Small currents.—Next we find the magnetization
dynamics in the wire for small applied currents. We denote
the solution (8) for the DW without a current, as S0ðzÞ.
When the current is applied we expect the DW to move and
rotate. The full dynamics is described by the equation

_S ¼ S�He þ h; He ¼ �H =�S; (9)

where the correction h for small currents is h ¼ hj,

h j ¼�j@S0 þð�j�� _z0ÞS0 �@S0 þ� _�S0 � ez �S0:

(10)

This correction gives the following results for the DW
velocity and angular velocity:

_z 0 ¼ 1þ��þð���Þ��
1þ�2

j; _�¼ ð���Þ�
ð1þ�2Þ�2

0

j: (11)

A few conclusions can be made from these equations.
(i) The direction of the DW rotation depends only on the

relative strength of the two dissipative terms in the LLG
equation (3). Remarkably, the sign of the DMI correction
to the DW velocity depends on whether the DW rotates in
the same direction as the twist of the DW. (ii) In line with
the general result [17], in the special case of � ¼ �, the
DW does not rotate and just moves with the velocity which
depends on current only. (iii) At very large twists �� �
1=j�� �j, _z0 ¼ _��J=2� independently of both � and �.
(iv) The DW rotation and its velocity diverge when D2

approaches 2�J for � � �. This nonphysical result is the
consequence of the fact that our derivation of Eq. (11)
neglects all modes except the zero ones. However, in the
limit of D2 ! 2�J the breathing mode softens and its
dynamics cannot be neglected.
Dynamics and transverse anisotropy.—In order to ac-

count for the anisotropy in the transverse plane we intro-
duce a correction to Hamiltonian (2) in the form

H xy ¼
Z

dzKS2yðzÞ; (12)

where the anisotropy constant K > 0 is very small.
The presence of this anisotropy fixes the tilt angle � of

the solution (8). To show it we calculate the correction to the
energy to the first order in K by substituting Eq. (8) into
Eq. (12). Assuming the wall to be at the origin

(z0 ¼ 0), we obtain �1E ¼ K�� 2�K��2

sinhð���Þ cosð2�Þ. This
correction has a minimum at � ¼ 0, �. When DMI is
absent (� ¼ 0) this reduces to K�½1� 2 cosð2�Þ�.
Now we find how the small anisotropy in the transverse

plane affects the magnetization dynamics. The correction
h defined in Eq. (9) takes the form h ¼ hj þ hxy, where hj

is given by Eq. (10) and

h xy ¼ S� �H xy

�S
¼ 2KSyS� ey: (13)

This perturbation leads to the following equations for the
position of the DW and the tilt angle:

_z 0 ¼ �

�
jþ ð�� �Þð1þ ���Þ

�ð1þ �2Þ ½j� jc sinð2�Þ�; (14)

_� ¼ ð�� �Þ�
ð1þ �2Þ�2

0

½j� jc sinð2�Þ�; (15)

where the critical current jc is given by

jc ¼ j�
���

sinhð���Þ ; j� ¼ �K�

j�� �j : (16)

j� is a critical current for the domain wall of the same
width, but without the twist. These equations reduce to
Eq. (11) for K ¼ 0. We also note that Eq. (16) is correct
only in the first order in K.
For j < jc the DW tilts by the angle sinð2�jÞ ¼ j=jc and

moves with a constant velocity _z0 ¼ j�=�, if � ¼ 0, the
DW does not move at all. For j > jc the DW both spins and
moves along the wire.
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The critical current jc is exponentially suppressed for
twists �� * 1=�. For small twists jc � j�½1�
�2ð��Þ2=6�. Note that jc in Eq. (16) diverges at � ¼ �,
that is the DW does not spin for any current [17].

Equations (14) and (15) can be solved analytically. The
solution gives both the velocity and angular velocity, which
periodically depend on time [18] (see Fig. 2), with the
period T and average angular velocity � given by [9]:

� ¼ 2�

T
¼ ð�� �Þ�

ð1þ �2Þ�2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � j2c

q
: (17)

More experimentally relevant, however, is the average
(drift) velocity of the DW Vd ¼ h _z0iT given by [9]

Vd ¼
� �
� j; for j < jc;
�
� jþ ð���Þð1þ���Þ

�ð1þ�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � j2c

p
; for j > jc:

(18)

The square of the deviation of the velocity from the drift
velocity, Eq. (18), hð�VÞ2iT is

hð�VÞ2iT ¼
�ð�� �Þð1þ ���Þ

�ð1þ �2Þ jc

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � j2c

p
�ðj� jcÞ

jþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � j2c

p ;

(19)

where � is a Heaviside function. Both VdðjÞ and hð�VÞ2iT
are shown in the inset of Fig. 1. For large currents, j � jc,
the drift velocity asymptotically approaches the velocity
given by Eq. (11), while hð�VÞ2iT approaches a constant.

Summary.—We have studied the effects of DMI on the
magnetization statics and dynamics in a thin ferromagnetic
wire cut or grown along a DM vector. We have derived a
simple criterion which determines whether the wire with
the spiral magnetization state can sustain a DW configura-
tion. Namely, in the wires with weak enough uniaxial
anisotropy and/or exchange constant compared to DMI
constant (2J� < D2) a DW cannot be formed. In the
opposite case (2J� > D2) we have found the spiral mag-
netization state with a DW in the wire. For � ¼ 0 the wall
moves along the wire only if the applied current is above jc
given by Eq. (16). The variance of the velocity in this

regime is given by hð�VÞ2iT ¼ V2
dðj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � j2c

p � 1Þ. For
� � 0 the DW moves but does not rotate for currents
below jc. Above jc the DW both moves and rotates [18].

Our result, Eq. (16), shows that the critical value of current
is suppressed by DMI. We also have derived the expres-
sion, Eq. (18), for the drift velocity Vd of the DW for all
values of current. It shows that above the critical current jc
the drift velocity can be enhanced by DMI.
We believe that our findings can be experimentally

observed, e.g., with the use of the scanning tunneling
microscopy which was employed to reveal the DW struc-
ture in ultrathin Fe nanowires [19,20]. In a realistic experi-
mental setting besides the intrinsic pinning there is an
extrinsic pinning due to a nonideal shape of the wire.
It is, however, clear that in the near future the development
of better nanofabrication techniques will lead to the situ-
ation when one has to worry mostly about the intrinsic
effect.
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