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We consider flux penetration to a 2D superconducting cylinder. We show that in the low field limit

the kinetics is deterministic. In the strong field limit the dynamics becomes stochastic. Surprisingly

the inhomogeneity in the cylinder reduces the level of stochasticity because of the predominance of

Kelvin-Helmholtz vortices.
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The kinetics of vortex production in superconductors
and superfluids is one of the intriguing problems of con-
densed matter physics. It is interesting not only in the field
of solid state physics but represents as well a very good
model to study topological phase transitions in cosmology
and other branches of physics [1]. In the last few decades
different scenarios for vortex production in superconduc-
tors and superfluids were proposed. The most common
way to produce vortices is to increase the superfluid ve-
locity in order to reduce the energy barrier between homo-
geneous flow and flow with vortices. This mechanism is
observed in rotating 3He where vortex nucleation and
critical velocities are measured [2]. In 2D homogeneous
superconducting films, increasing the current leads to dy-
namics which are similar to the phase slip (PS) transition
in 1D [3]. The order parameter (OP) reaches zero along a
straight line across the film and the phase displays a 2�
jump along this line. This PS line solution [4] corresponds
to the deterministic and most ordered PS kinetics in 2D.
The inhomogeneity caused by current contacts leads to a
qualitatively similar picture. The OP is strongly suppressed
along a straight line across the film but it reaches zero only
at two points on this line. This pair of vortices is called
kinematic vortex-antivortex (VAV) pair [5]. It spreads
quickly in opposite directions along this line propagating
the 2� jump of the phase without formation of well-
defined VAV pairs [6].

A different scenario of vortex production was proposed
by Kibble [7] and Zurek [8] (KZ). When the sample is
quickly quenched through the critical temperature Tc, the
nucleation of the low temperature phase starts in different
places with uncorrelated phases of OP. Then, domains
grow and start to overlap leading to the formation of
vortices. This mechanism is a promising way to test cos-
mological theories in condensed matter physics [9,10].
This dynamics is stochastic and sensitive to small varia-
tions of initial conditions. On the other hand the depen-
dence of the vortex density on the quench time and their
spatial correlation are universal. Later, in Refs. [11,12], it
was proposed that the quench occurs not only due to
fast temperature change but also due to the temperature
front propagation. Aranson et al. considered the case of

a temperature quench in the presence of external current
[13]. The new phase with zero current grows after the
quench. Therefore on the border of the quenched region,
the superfluid velocity has tangential discontinuity, leading
to vortex formation, similarly to the classical hydrody-
namic Kelvin-Helmholtz (KH) instability [14] which is
also known in superfluids [15,16]. Moreover, the KH in-
stability suppresses the development of KZ vortices [13].
In this Letter, kinematic VAV, KZ, and KH vortices are
distinguished by their production mechanism although
they are topologically equivalent.
To demonstrate how a deterministic type of dynamics

becomes stochastic, we model a superconducting film
rolled on a cylinder in an external time dependent magnetic
field parallel to the cylinder axis (Fig. 1). Depending on the
applied magnetic field and the dimensions of the ring, we
follow the evolution from the deterministic PS line dynam-
ics to the stochastic behavior described by the KZ mecha-
nism. In the proposed model, topological defects are
generated by the intrinsic quench induced by the external
field. The evolution towards stochastic behavior is strongly
influenced by the KH instability which develops in the
presence of inhomogeneities. To model the inhomogeneity
of the film we assume that there is a thin stripe of super-
conductor along the film with a different coherence length.
The thickness of the film d is small d � � � �eff . Here �
is the coherence length and �eff is the Pearl penetration
depth. Therefore we can neglect all corrections to the
external magnetic field H caused by the current in the
film. The radius of the film is R> �. The time dependent

FIG. 1 (color online). Geometry of the system: a 2D cylinder
with an applied magnetic field H.
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Ginzburg-Landau (TDGL) equation in dimensionless units
has the form

u

�
@c

@t
þ i�c

�
¼ bðzÞðc � c jc j2Þ � ðirþ aÞ2c þ �:

(1)

Here c is the dimensionless complex OP, the spacial
coordinate r is measured in units of �, and time is mea-

sured in units of phase relaxation time �� ¼ 4��eff�n

c2
,

�eff ¼ �2

d , � is the bulk penetration depth, �n is the normal

state conductivity, and c is the speed of light. The parame-
ter u ¼ �c

��
is a material dependent parameter, where �c is

the relaxation time of the amplitude of the OP. According
to the microscopic theory, u ranges from 5 to 12 but we
assume 0< u<1. The vector potential a is measured in

units of �0

2�� where �0 is the flux quantum. The function

bðzÞmodels the z dependence of the coherence length �ðzÞ.
As shown in Fig. 1, we chose �ðzÞ ¼ �=

ffiffiffiffiffiffiffiffiffi
bðzÞp

and bðzÞ ¼
1� b2#ðz� w=4Þ#ð3w=4� zÞ. Herew is the width of the
film in units of �, b parametrizes the level of inhomoge-
neity of the film and #ðxÞ is the Heaviside step function.
Here we use periodic boundary conditions and the bound-
ary condition with vacuum at z ¼ 0 and z ¼ w. The equa-
tion for the electrostatic potential �, measured in units of
�0

2�c��
, where e is the electronic charge and @ is the Planck

constant, reads

r2� ¼ �r
�
i

2
ðc �rc � crc �Þ þ ajc j2

�
: (2)

To model the process of vortex formation we assume that
at time t < 0 external magnetic field is absent. At t ¼ 0
the field suddenly appears and stays constant for t > 0;
i.e., the tangential component of the vector potential is
a#ðtÞ. We thus study the kinetics of the vortex generation
as a function of a with different values of u.

Let us first consider the stability of the solution in
the uniform case. We linearize the TDGL equations (1) and
(2), in small fluctuations of OP fðr; tÞ ¼ c ðr; tÞ � c 0

and search for a solution in the form fðr; tÞ ¼P
kCk expðikrþ �ktÞ. It is clear that the transverse kz

component always contributes to the stability of the initial
state. Therefore, the condition �k > 0 is the same as in 1D

[3]: �
�0

� R
�
ffiffi
3

p , where � is the magnetic flux through the

ring at t > 0. This condition provides a rough estimate for

the number of the expected PS events N � �
�0

. It defines

the first critical value of the external field ac1 ¼ 1=
ffiffiffi
3

p
.

Therefore, in the low field limit ac1 � a � 1, the dynamics
will be similar to the 1D case with very weak
z dependence. Well-defined vortices may appear in this
region of the field if the film is inhomogeneous as shown in
Fig. 1. The situation is different when the field a increases
further. Dropping kz ¼ 0, the eigenvalues are

�ð1;2Þ
k ¼ �c 2

0=2þ ð1� 2c 2
0 � a2 � k2Þ=u

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16c 2

0a
2 þ c 4

0ðu� 2Þ2 þ 16k2a2Þ=4u2
q

: (3)

�k¼0 ¼ 1�2c 2
0
�a2

u � c 2
0

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16c 2

0a
2 þ c 4

0ðu � 2Þ2Þ=4u2
q

describes the decay rate of the uniform solution. On
the other hand for finite k, �k is positive and characterizes
the growth of the corresponding Fourier compon-

ents Ck. The fastest growth is found for k¼ 1
4a �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�16uc 2
0a

2� c 4
0ðu� 2Þ2þ 16a4

q
and the rate is

determined by �max ¼ 1
16ua2

ð8ðu� 4Þc 2
0a

2 þ 16a2þ
c 4

0ðu� 2Þ2Þ. The qualitative difference in kinetics takes

place when the decay rate of the uniform solution becomes
faster then the growth of the new phase. This effect is
similar to the quench through Tc in the KZ mechanism

[1,7]. We find that at a > ac2 ¼
ffiffiffi
2

p
, the OP is suppressed

to zero and the growth of the phase with finite k is accom-
panied by the rapid development of vortices. The density of
vortices may be estimated using Zurek arguments where
the quench time should be replaced by �Q ¼ ða2 � 1Þ�1

leading to n / ��1=2
Q [17].

We simulate Eqs. (1) and (2), using the fourth order
Runge-Kutta method. The spatial derivatives are evaluated
using a finite difference scheme of second order or using
a fast Fourier transform algorithm depending on the
boundary conditions. The calculations are performed for
0< a< 5 and for the flux � ranging from 0 to 50�0.
We investigate the flux penetration into the homogeneous

ring for two different boundary conditions. In the case of
periodic boundary conditions we identify different regimes
in accordance with Eq. (3). In the small field limit a < ac1
the ring is in a stable state and the penetration of the
magnetic flux into the ring can only be induced by a very
strong noise � in Eq. (1). When ac1 < a< ac2, in agree-
ment with the stability analysis, the PS kinetics depends on

the external magnetic field. When �
�0

< 10 the kinetics is

similar to the 1D case. The transition is characterized by one
or more lines in the z direction where the OP decreases to
zero (the PS line case [5]). These lines may appear simul-
taneously or consecutively in time, depending on u [3].
As expected, the number of PS events is determined by

the ratio �
�0

. These PS lines represent the limiting case of

kinematic VAV pairs traveling with infinite velocity.

When the flux is increased ( �
�0

> 10), the kinematic

vortices become clearly distinguishable. In Fig. 2(a),
we present the time evolution of the average value of
the OP together with the time dependence of the number
of vortices in the sample. The kinetics is characterized by
a series of consecutive PS events well separated in time.
Few VAV pairs may propagate along the same line at the
same time [18]. PS events are produced by kinematic VAV
pairs propagating along the same line where the amplitude
of OP is reduced. Kinematic vortices can propagate in the
same direction, one after another or in an opposite direc-
tion leading to the annihilation of VAV pairs and accel-
erating the dynamics. Contrary to [6], kinematic VAV
pairs are formed without any inhomogeneity in the film.
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At higher fluxes kinematic VAV pairs are randomly cre-
ated on the line as in the case of a ‘‘1D quench.’’ In the
x direction, the dynamics remains ordered with values of

the standard deviation of the position of the vortices
ffiffiffiffiffiffiffiffi
	 �x2

p
approaching 0:5�.

With the further increase of a the number of PS lines
increases and the kinetics becomes more stochastic be-
cause of the interaction of different PS lines. As a result,
straight lines are replaced by vortex rivers which become
broader and have finite curvature [Fig. 2(b)]. The vortex
rivers are comparable to the vortex self-organization dis-
cussed in [19] under different boundary conditions. Along
one vortex river, few VAV pairs are propagated. The ki-
netics is determined by the motion of these pairs along the
rivers and finally by their annihilation. Importantly, the
sample average of OP never reaches zero, contrarily to
the case of the large field a > ac2. The total number of

vortices in the beginning of the process is larger than �
�0

[Fig. 2(b)] which is also an indication of the growing
importance of chaotic behavior in the dynamics. The val-

ues of
ffiffiffiffiffiffiffiffi
	 �x2

p
are also strongly enhanced, reaching 2�R=3.

The velocity of vortices along the rivers becomes smaller
which is seen from the time dependence of the vortex
number [Fig. 2(d)]. Nevertheless, the velocity is still high
compared to the case when the OP has recovered to its
equilibrium value. The last regime a > ac2 is presented in
Fig. 2(c). Here the quench condition is satisfied and the OP
decreases uniformly until it reaches zero. As a result, the
new phase starts to grow uncorrelated and the vortices are
created randomly. The number of vortices is substantially

larger than �
�0

. Most of these vortices recombine rapidly.

The remaining vortices move slowly through the sample
propagating the 2� phase jump. The random dispersion of
these vortices is a fingerprint of the KZ mechanism.

Indeed,
ffiffiffiffiffiffiffiffi
	 �x2

p
reaches now 2�R=2, which means that

vortex distribution is completely random. Another charac-
teristic of the KZ scenario is that the vortices are created
while the order parameter is very close to zero and not
during the fast growth like in the previous cases as one can
see by comparing Figs. 2(a) and 2(b) with Fig. 2(c). It is

important to notice that the total net vorticity is strictly
equal to zero at any time in the case of periodic boundary
condition in the z direction.
For vacuum boundary conditions the kinetics is very

similar. When ac1 < a< ac2 and
�
�0

< 10 one or more lines

with reduced OP are formed. The difference is that the PS
lines here have finite curvature, because they start to grow
from the edges of the film and finally connect each other.
Further increase of the flux, keeping a constant leads to the
formation of flux rivers. The most important difference is
that not all ‘‘rivers’’ necessarily connect two edges of the
film. As a result some of them ended in the middle of the
film, leading to the relatively small vorticity. These remain-
ing vortices and antivortices propagate slowly to the edges
of the film and kinetics is determined by the slow vortex
motion. The dynamics when a > ac2 is governed by KZ
mechanism, as in the previous case but the total net vor-
ticity may be finite.
In the case of an inhomogeneous superconductor, the

effective coherence length is now z dependent �ðzÞ ¼
�=

ffiffiffiffiffiffiffiffiffi
bðzÞp

. Therefore only the middle part of the ring may
be unstable while the other parts of the film remain in
the metastable state. The introduction of z dependence of
the parameters in Eq. (1) is designed to enhance the trans-
verse vortex dynamics and allows us to demonstrate differ-
ent mechanisms of vortex formation. As expected, the
PS dynamics starts first in the region with stronger current

and is characterized by a and �
�0

.

In the region ac1 < a< ac2 and small flux �
�0

< 10 the

initial stage of the kinetics is similar to kinetics in the
homogeneous film. The VAV pairs are not well defined.
However, when kinematic VAV pairs approach the low
current regions, they become well defined and are slowing
down [Fig. 3(a)]. Therefore vortices are stabilized near
the line where the tangential velocity has discontinuity.
These vortices represent another case of KH instability in
superconductors. This instability leads to the formation of
well-defined vortices and governs the kinetics of the PS. To
the best of our knowledge this is the only instability which
allows vortex production in the low flux limit.

FIG. 2 (color online). Total number of vortices v in the system and the sample average value j
j of the OP as a function of time for
�=�0 ¼ 20 and a ¼ 0:6 (a), a ¼ 0:8(b), and a ¼ 1:8 (c). The insets represent snapshots the amplitude of OP at t ¼ 700 (a) and
t ¼ 105 (b). For the quenched case (c), the snapshot displays the local vorticity at t ¼ 20.
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When the flux through the ring is large �
�0

> 10, the

initial fast dynamics is similar to the dynamics in the
homogeneous case until vortices reach the low current
regions. Then they become slow and well defined.
The vortices propagate one after another to the film edge
[Fig. 3(b)], demonstrating the vortex-vortex attraction even
in the case when the OP has already recovered.

The further increase of a > ac2 leads to the quench in
the middle part of the film (Fig. 1). During the quench
many KZ vortices are created. Most of them are annihi-
lated on a very short time scale. The rest reaches the line
separating the region with different currents. The vortices
almost stop near this line. The further dynamics is deter-
mined by the diffusion of these vortices to the film edges.
When a is large enough, the KH vortices become well
defined before the recovery of the OP in the middle part of
the film and therefore the inhomogeneity suppresses the
KZ mechanism in agreement with Ref. [13], making ki-
netics less stochastic.

Experimentally, observing such dynamics of vortices
might be a real challenge because the short characteristic
times does not allow the use of instruments with sufficient
space resolution. However, recent works [10,20] showed
that freezing the dynamics can characterize both KZ and
vortex river scenarios. Another idea is to use time resolved
femtosecond optical spectroscopy as proposed in Ref. [21].
As it is shown in Refs. [3,22] the role of heating is not
important for the proposed geometry of the film.

We have considered the kinetics of the flux penetration
to the 2D ring. We found out that for small values of the
external field a, the kinetics is deterministic and essentially
1D. Increasing the flux � creates kinematic vortices and
even leads to a 1D quench along the PS line which is a first
step towards stochastic behavior (see Ref. [22]). A further
increase of a leads to the formation of vortex rivers,
and ultimately to the quench of the sample leading to the
stochastic dynamics of KZ vortices. The dynamics in the
inhomogeneous film demonstrates that the VAV pairs
are the topological analog of the PS mechanism in 2D
but this analogy is not as straightforward as is often

believed. Finally, our calculations for a partially quenched
film indicate that KH vortices at the interface are strongly
predominant.
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FIG. 3 (color online). Total number of vortices v in the system and the sample average value j
j of the OP as a function of time for
a1 ¼ 0:4, �=�0 ¼ 5, and b ¼ 4 (a); �=�0 ¼ 20 and b ¼ 2:25 (b); �=�0 ¼ 50 and b ¼ 12:25 (c). The insets represent snapshots of
the amplitude of the OP at t ¼ 120 (a); t ¼ 790 and t ¼ 830 (b). For the quasiquenched case (c), the snapshot displays the local
vorticity at t ¼ 112.
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