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A direct signature of electron transport at the metallic surface of a topological insulator is the

Aharonov-Bohm oscillation observed in a recent study of Bi2Se3 nanowires [Peng et al., Nature Mater.

9, 225 (2010)] where conductance was found to oscillate as a function of magnetic flux � through the

wire, with a period of one flux quantum�0 ¼ h=e and maximum conductance at zero flux. This seemingly

agrees neither with diffusive theory, which would predict a period of half a flux quantum, nor with ballistic

theory, which in the simplest form predicts a period of �0 but a minimum at zero flux due to a nontrivial

Berry phase in topological insulators. We show how h=e and h=2e flux oscillations of the conductance

depend on doping and disorder strength, provide a possible explanation for the experiments, and discuss

further experiments that could verify the theory.
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The characteristic feature of a strong 3D topological
insulator (TI) is the presence of a conducting surface that
is topologically protected from Anderson localization by
time-reversal-invariant disorder [1]. In general the surface
state has an odd number of Dirac points in the energy
spectrum, with the simplest case of a single Dirac point
being realized at the (111) surface of Bi2Se3 [2,3]. While
the presence of this surface metallic state has been dem-
onstrated convincingly using surface probes, notably
angle-resolved photoemission spectroscopy [2], studies
of the transport properties of these surfaces are rare
[4–8]. Topological insulator nanowire with perfectly insu-
lating bulk realizes an ideal hollow metallic cylinder with a
diameter large enough that it is easy to thread a large
magnetic flux through its core [6]. The magnetoconduc-
tance of such wires not only reflects the fundamental
effects of normal metal physics such as the Aharonov-
Bohm effect and weak localization, but can also indirectly
probe the existence of a nontrivial Berry phase.

The magnetic flux affects the transport properties of the
metal surface through the Aharonov-Bohm effect: the
wave function of the particles picks up a phase of
2��=�0 going around the circumference, with � the total
flux through the cylinder and �0 ¼ h=e the flux quantum
[9]. There are two inequivalent values of flux that do not
break time-reversal symmetry in the surface: 0 and �0=2
(up to integer multiples of�0). In normal metals there is no
fundamental difference between the two values, but in TI
nanowires there is: only one of these values allows for a
state at the Dirac point (cf. Fig. 1). When there is a state
at the Dirac point, the total number of modes is odd and
time-reversal symmetry requires the presence of a single
perfectly transmitted mode [10] contributing conduct-
ance e2=h. If the contribution of all other modes to the

conductance is exponentially suppressed, which happens,
for example, at the Dirac point for ballistic wires with a
small aspect ratio (length � circumference), the conduc-
tance is dominated by the presence or absence of the
perfectly transmitted mode. In a flat surface with a Dirac
point, such as graphene, the zero mode is realized at zero
flux, while in a curved surface as in TI nanowires, it is
realized at �0=2 [11–13]. This phase shift occurs because
the particle spin is constrained to lie in the tangent plane to
the surface and thus a particle picks up a Berry phase of �
due to the 2� rotation of the spin as it goes around the
surface [14]. The magnetoconductance of an undoped
ballistic TI nanowire is thus expected to oscillate with a
period of �0 and a maximum at � ¼ �0=2.
The situation is different in the presence of disorder

strong enough that transport is diffusive. The classical
conductance acquires a quantum correction due to inter-
ference between time reversed paths. The phase difference
between a path going once clockwise around the cylinder

FIG. 1. A schematic of the band structure of a topological
insulator nanowire in the presence of a magnetic flux�. Because
of a nontrivial Berry phase of the particle a gapless mode is only
realized at a flux with half integral flux quanta.
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and one going anticlockwise is 2� 2��=�0 and the con-
ductance thus oscillates with a period of�0=2 [9]. Whether
the conductance has a maximum or a minimum at zero flux
depends on the presence (weak antilocalization) or absence
(weak localization) of spin-orbit coupling. By their very
nature, topological insulators have strong spin-orbit cou-
pling and thus showweak antilocalization with a maximum
conductance at zero flux.

Surprisingly, however, in the recent transport experi-
ments on Bi2Se3 nanowires neither of the above scenarios
seems to be realized [6]. In the experiment the weak
antilocalization induced �0=2 period is essentially absent,
while the �0 periodicity is clearly seen. However, the
conductance has a maximum at � ¼ 0 rather than at the
expected � ¼ �0=2. Although none of the available TI
are particularly good bulk insulators, an explanation of this
discrepancy from bulk properties is unlikely, since there is
no compelling reason for the bulk conductance to show
sharp flux periodicity determined by the cross-sectional
area.

In this Letter we provide a theoretical study of the
transport properties of the surface in the presence of par-
allel flux and time-reversal preserving disorder, combining
analytical estimates with numerical simulation. By study-
ing a pure surface theory our results are not complicated by
bulk contributions, making it easier to disentangle the
surface and bulk properties in the experiments. We show
that in the regime of weak disorder and nonzero doping our
theory is consistent with the experimental result. We begin
by briefly explaining our theoretical model and calcula-
tions before presenting our results and discussing them in
relation to experiments.

The transport properties of the surface are determined by
the Dirac equation

½vp � �þ VðrÞ�c ¼ "c : (1)

� ¼ ð�x; �yÞ are the Pauli sigma matrices and v is the

Fermi velocity. The Fermi energy " is determined by
the density of surface charge carriers and can in principle
be tuned by doping. VðrÞ is the disorder potential which we
take to be Gaussian correlated

hVðrÞVðr0Þi ¼ K0

ð@vÞ2
2��2

e�jr�r0j2=2�2
(2)

with correlation length �. The exact form of the corre-
lator is not important in obtaining our results. K0 is the
dimensionless measure of the disorder strength. We
take 0< x< L to be the coordinate along the wire and 0<
y <W as the circumferential coordinate. The magnetic
flux � is absorbed into the boundary condition

c ðx; yþWÞ ¼ c ðx; yÞeið2��=�0þ�Þ: (3)

The extra factor of � is the curvature-induced Berry phase.
Despite the large g factor the Zeeman coupling of the
magnetic field and the spin is not expected to be of rele-
vance. Since the field is parallel to the surface this simply

shifts the band structure in Fig. 1, unlike a normal Zeeman
field, which opens up a gap. We therefore ignore Zeeman
coupling in this work
The scattering matrix is obtained using the transfer

matrix method of Ref. [15], which in turn gives the con-
ductance G through the Landauer formula. The total trans-
fer matrix T relates the wave function on the left (x ¼ 0)
to the wave function on the right (x ¼ L) and is obtained as
a product of N transfer matrices �T j that propagate the

wave function from x ¼ ðj� 1ÞL=N to x ¼ jL=N with
j ¼ 1; . . . ; N. The �T j are obtained by solving the Dirac

equation (1). The dimension of �T j is determined by

the number 2Mþ 1 of transverse modes qn ¼ 2�ðnþ�=
�0 þ 1=2Þ=W, n ¼ �M, Mþ 1; . . . ;M included in the
calculation. We take N and M large enough that the con-
ductance no longer depends on them. For explicit expres-
sions for the matrices �T j and further details we refer to

Ref. [15]. We average over �103 disorder realizations.
The model (1) has been studied extensively in the limit

of large aspect ratio W=L � 1, in the context of graphene
in the presence of valley-preserving scalar disorder (for a
recent review, see Ref. [16]). In this limit the conductance
is independent of boundary condition, and therefore of
flux, and is topologically protected from Anderson local-
ization, growing logarithmically with system size indica-
tive of weak antilocalization [15,17]. The opposite limit of
very small aspect ratio W=L � 1 describes carbon nano-
tubes if in additionW is very small (smaller than the mean
free path). Carbon nanotubes are fundamentally different
than TI wires in that the Berry phase is absent. Also, due to
their small diameter it is challenging to thread through
them a flux of the order of or larger than a flux quantum.
For a review of related theoretical and experimental work,
see Ref. [18]. Here we study the intermediate regime of
aspect ratio W=L� 1, which is the regime relevant to the
experiment of Ref. [6]. In this regime the conductance does
depend on the flux and this dependence in the presence of
disorder has, to our knowledge, not been studied system-
atically before.
We now present and interpret the results of our numerical

simulation. In Fig. 2 we plot the density dependence of the
conductance for a few different disorder strengths and a few
values for the magnetic flux. Three qualitatively different
regimes are observed: (i) The small doping regime close to
the Dirac point, and large doping regime with (ii) weak
disorder (small K0) and (iii) large disorder (large K0).
In the small doping regime, the conductance is generally

small compared to the conductance quantum e2=h, and the
physics in this regime is thus dominated by the possibility
of a perfectly transmitted mode. In Fig. 3 we show the flux
dependence of the conductance for a fixed diameter and a
few wire lengths. Because of the Berry phase the conduc-
tance peaks at � ¼ �0=2 with conductance of about e

2=h.
For other values of flux the conductance is exponentially
suppressed (with aspect ratio) and goes to zero in the limit
ofW=L ! 0. Interestingly, the conductance increases with
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increasing disorder strength for a fixed system size, at the
same time going to zero with increasing system size.

For weak disorder, away from the Dirac point, the
magnetoconductance generically oscillates with a period
of �0 with an amplitude that depends on ". The maximum
conductance is either at� ¼ 0 or at� ¼ �0=2, depending
on the amount of doping. (Without doping, the maximum
is at � ¼ �0=2, as discussed in the introduction.) In the
inset to Fig. 4 we plot the amplitudes �G1=2 and �G1 of

the �0=2 and �0-periodic oscillations of the magnetocon-
ductance,

�G1=2

¼Gð�¼�0=2Þ þGð�¼ 0Þ � 2Gð�¼�0=4Þ
2

; (4a)

�G1 ¼Gð�¼ 0Þ �Gð�¼�=2Þ; (4b)

as a function of disorder strength for � ¼ 0:308@v=� as an
example of a doping level where the conductance has a
maximum at � ¼ 0 (as in the experiment [6]). �G� is a
measure of the strength of the ��0 period in the
magnetoconductance.
For very small values of K0 the conductance can have

sharp Fabry-Perot resonances that lead to the complicated
nonmonotonic behavior seen in Fig. 4. The resonances are
very sensitive to disorder and disappear already at rela-
tively small values of K0 [19]. With increasing disorder
strength the nonmonotonic dependence on the density
is smoothed out and Gð� ¼ �0=2Þ becomes equal to
Gð� ¼ 0Þ and the half-flux quantum period starts to domi-
nate over the one-flux quantum period. Away from these
values of the flux, time-reversal symmetry is broken and
the weak antilocalization correction to the conductance
gives a �0=2 period of the magnetoconductance.
We can estimate the disorder strength at which the

crossover between the �0 and �0=2 period happens with
the following argument. The elastic linewidth broadening
is given by [20]

@

�
¼

Z dqdr

4�
ð1� cos2	qÞ�ðkF � qÞhVð0ÞVðrÞieiq�r

¼ @v

�

2K0I1½ðkF�Þ2�
kF� exp½ðkF�Þ2�

; (5)

with kF ¼ "=ð@vÞ. When this broadening is of the order of
the mean level spacing 2@v�=W, the oscillations in the
density of states that cause the one-flux quantum period
are washed out. For the parameters in Fig. 4 this gives

FIG. 2 (color online). Conductance versus Fermi energy for
three different disorder strengths K0 and for three representative
values of magnetic flux. Here W ¼ 100� and L ¼ 200�. At low
disorder (K ¼ 0:2), whether the conductance at � ¼ 0 or � ¼
�0=2 is larger is highly sensitive to the location of the Fermi level.

FIG. 3 (color online). Conductance at the Dirac point " ¼ 0 as
a function of magnetic flux with W ¼ 100�, L=� ¼ 100 (solid
lines), 150 (dashed lines), and 200 (dotted lines), and two values
for the disorder strength.
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FIG. 4 (color online). Main panel: Comparison of the analyti-
cal expression (7) for the weak antilocalization correction as a
function of aspect ratio, with numerical results. The numerical
data are obtained for a fixedW ¼ 40�, K0 ¼ 1, and "�=v@ ¼ 3.
Inset: The conductance amplitudes �G1=2 and �G1 of Eq. (4) as a

function of disorder strength K0 at "�=v@ ¼ 0:308 and for L ¼
2W ¼ 200�. The structures at small K0 can be understood as
Fabry-Perot resonances. As disorder increases, the half-flux
oscillations dominate the one-flux oscillations.
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a crossover value Kc � 0:2 in reasonable agreement with
the data shown in Fig. 4.

In the limit of short and wide wire the conductance is
independent of the flux, and �G1=2 goes to zero. Intuitively

this is because the particles leave the wire before they have
time to go around the circumference of the wire. Adapting
the calculation of the weak antilocalization correction [21]
to the boundary conditions appropriate to the cylinder
geometry one finds

�G ¼ W

L

e2

h
��; (6)

with

�� ¼ 1

�
log

L

�
þ 1

�

X1
n¼1

cos
4�n�

�0

logð1� e��nW=LÞ; (7)

up to an L- and �-independent constant. In Fig. 4 we
compare the analytical expression (6) to the numerical
calculation with good agreement.

With a good understanding of the different transport
regimes we are now in a position to discuss the findings
of the experiment of Peng et al. [6] in the context of our
results. A magnetoconductance with a period of �0 and a
maximum at zero flux is realized in our model at doping
large enough that the conductance is larger than e2=h and
in the presence of weak disorder such that Fabry-Perot
resonances are washed out but the dynamics are not yet
fully diffusive. It is reasonable to expect the samples to be
doped as there is no reason for the Fermi energy to coincide
with the Dirac point. In fact, special measures are required
to get them to coincide [22].

Whether the condition of weak disorder is realized is
harder to judge, as very few transport experiments are
available. It is, however, clear how one would go about
checking experimentally whether this scenario is actually
realized. By varying the chemical potential of the surface
states the maximum of conductance should shift back and
forth between � ¼ 0 and � ¼ � with an amplitude that,
depending on parameters, is likely to be largest (close to
e2=h) at the Dirac point (cf. Fig. 2). Alternatively, one can
change the period of the conductance oscillations from �0

to �0=2 by increasing the surface disorder (cf. Fig. 4). We
expect both methods to be practicable with current experi-
mental techniques.

In summary, we have calculated the flux dependence of
the conductance of disordered topological quantum wires
in the presence of quantum flux parallel to the wire,
modeling the surface states with a continuous Dirac
Hamiltonian. The conductance is found to have the ex-
pected �0=2 period due to weak antilocalization away
from the Dirac point and with strong enough disorder
such that the electron motion is diffusive. A period of �0

is obtained either at the Dirac point at any disorder
strength, or away from the Dirac point with weak disorder.
While in the former case the conductance always has

a maximum at � ¼ �0=2, in the latter case the maximum
can be reached at either� ¼ 0 or� ¼ �0=2 depending on
the doping level. We hope that these results will aid further
transport experiments on the remarkable surface state of
topological insulators.
The protection of a mode at�0=2 is studied using a fully

3D simulation in a concurrent work [23].
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