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We propose a microrheological technique to measure normal stress coefficients (NSCs) of complex

fluids, which would represent the first quantitatively accurate measurement of a nonlinear rheological

property by microrheology. Specifically, the mechanical response of almost all complex fluids to ‘‘weakly

nonlinear’’ deformations is described by the second-order fluid model. Two microrheological probes pulled

with equal velocities through a second-order fluid experience a relative force that is linear in the first and

second NSCs of the complex fluid. We compute the coupling matrix between NSCs and relative forces for

probes translating parallel and perpendicular to their line of centers, which can be inverted to yield NSCs

from measured relative forces. There exists an optimum probe separation for inversion of the coupling

matrix and, hence, experimental recovery of NSCs.
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Microrheology aims to infer rheological properties of
soft materials and complex fluids using colloidal probe
particles [1–5]. In passive, or Brownian, microrheology,
the probe moves randomly due to thermal fluctuations of
its surroundings. The probe’s mean-squared displacement
is measured, from which the linear viscoelastic moduli (or,
equivalently, complex viscosity) of the material are calcu-
lated via the generalized Stokes-Einstein relation [5,6].
In nonlinear microrheology, the probe is actively pulled
through the complex fluid, with the aim of driving the
material out of equilibrium and measuring nonlinear rheo-
logical properties. Crucially, the material’s nonequilibrium
microstructure renders the generalized Stokes-Einstein re-
lation inapplicable. Nonlinear active microrheology ex-
periments have been performed on suspensions near the
glass transition [7], colloidal dispersions [8,9], and DNA
solutions [10], while modeling has focused on dilute hard-
sphere colloids [11,12] and Brownian dynamics simula-
tions of sphere [13] and rod [14] suspensions. Typically,
the force required to maintain the probe at a given velocity
is measured (or computed) and recast as a velocity-
dependent ‘‘microviscosity,’’ by using a generalized
Stokes drag. However, this assumed relation between mea-
sured probe motion and material rheology is fraught with
difficulties and does not, in general, recover true rheolog-
ical properties [15]. Furthermore, almost all existing tech-
niques are limited to extracting a frequency- or velocity-
dependent viscosity, whereas conventional ‘‘macrorheo-
logical’’ techniques can, in principle, determine the entire
stress tensor [16,17].

In particular, complex fluids often posses normal stress
coefficients (NSCs), which are nonlinear material proper-
ties that cause visually dramatic and counterintuitive flow
phenomena, e.g., ‘‘rod climbing’’ of polymer solutions due
to tension along curved streamlines [16], purely elastic
instabilities in inertialess viscometric flows [18], and

‘‘elastic turbulence’’ [19]. Formally, in a simple shear
flow with velocity ux ¼ _�y (with shear rate _� and flow,
gradient, and vorticity directions x, y, and z, respectively),
the first and second NSCs are defined as �1 ¼
ð�xx � �yyÞ= _�2 and �2 ¼ ð�yy � �zzÞ= _�2, respectively,

where �ij are components of the deviatoric stress tensor

[16]. Clearly, �1 ¼ �2 ¼ 0 for a Newtonian fluid. For
example, polymer solutions have �1 > 0 and �2 < 0.
One can measure �1 in parallel-plate or cone-and-plate
rheometers, as the force acting to drive the rheometer walls
apart is directly proportional to it. Simultaneous mea-
surement of �1 and �2 is significantly more challeng-
ing, requiring rheo-optical methods [20] or a modified
cone-and-plate apparatus with pressure transducers fitted
along the plate [21].
Here, we present a novel technique to measure NSCs by

active microrheology, which would represent the first un-
ambiguous and quantitatively accurate microrheological
measurement of a nonlinear rheological quantity.
Specifically, we propose to pull two identical torque-free
spherical colloidal probes with equal velocities through a
complex fluid and measure the relative force FR between
them. At very small pulling speeds U, the fluid micro-
structure recovers instantaneously from the probe motion,
and the hydrodynamic stress on the probes is linear in U
and Newtonian in form. In this case, FR is identically zero,
as a consequence of reversibility and symmetry at zero
Reynolds number [22]. For pulling speeds sufficiently
large to drive the microstructure just ‘‘weakly’’ out of
equilibrium, the stress becomes non-Newtonian and non-
linear in U, resulting in a nonzero FR. In this ‘‘weakly
nonlinear’’ regime, the deviatoric stress � for almost all
complex fluids can be represented by the second-order
fluid model [16]

� ¼ �Að1Þ � 1
2�1Að2Þ þ�2Að1Þ �Að1Þ; (1)
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where � is the shear viscosity andAð1Þ ¼ ruþ ðruÞT and

Að2Þ ¼ DAð1Þ=Dt� ðruÞT �Að1Þ �Að1Þ � ru are the first

and second Rivlin-Ericksen tensors, respectively, with ru
the velocity gradient tensor. The second-order fluid cap-
tures the ‘‘first’’ non-Newtonian material response with
increasing flow speed. The first term in (1) is simply the
Newtonian stress; the remaining terms are non-Newtonian
stresses, which are proportional to the NSCs and scale as
velocity squared. Hence, the relative force FR acting on the
probes is linearly dependent on the NSCs and proportional
to the square of their velocities. Since �1 and �2 are two
unknown quantities to be determined, we require two
independent measurements of FR. An intuitive choice is
to pull the probes parallel and perpendicular to their line of

centers. The relative forces in each case, Fjj
R and F?

R , are
then related to the NSCs via

Fjj
R

F?
R

 !
¼ Cjj

1 Cjj
2

C?
1 C?

2

 !
�1

�2

� �
U2: (2)

In the dimensional equation above, the elements Cjj
i and

C?
i (i ¼ 1; 2) of the ‘‘coupling matrix’’ C are dimension-

less functions of the scaled probe separation d=a only (the
probes have radii a and are separated by 2d). To obtain
the matrix elements requires an explicit calculation of the
relative force between the probes as they are pulled
through a second-order fluid. Once C has been obtained,
(2) can be inverted to determine �1 and �2 from an

experimental measurement of the relative forces Fjj
R and

F?
R at a prescribedU. Significantly, C is independent of the

non-Newtonian properties of a specific fluid, which are
contained in �1 and �2. Thus, our technique enables
microrheological measurement of NSCs for all complex
fluids that behave as second-order fluids under weakly
nonlinear deformations.

Computing the matrix elements for arbitrary separations
is challenging. It is, therefore, tempting to consider widely
separated probes d=a � 1, for which asymptotic tech-
niques are applicable. Indeed, Brunn [23] used the method

of reflections to obtain Cjj
1 ¼ C?

1 ¼ 9�
4 ðadÞ2 and Cjj

2 ¼
C?
2 ¼ 9�

8 ðadÞ2. However, using these values with (2) we

find the matrix is singular and thus cannot be inverted.

This implies that Fjj
R and F?

R are not linearly independent
for d=a � 1, necessitating computation of the relative
forces at arbitrary separations.

Conservation of momentum requires that the total stress
in the fluid � satisfies r � � ¼ 0, where � ¼ �pIþ �
and p is the dynamic pressure. Additionally, the fluid is
incompressible (r � u ¼ 0). Henceforth, we employ di-
mensionless variables with distance, velocity, and stress
scaled by a, U, and �U=a, respectively. We invoke the
weakly nonlinear limit by expanding the velocity and
pressure as fu; pg ¼ fu0; p0g þ Defu1; p1g þOðDe2Þ,
where the Deborah number De ¼ tr=tf is the ratio of

relaxation tr to flow tf time scales. The momentum equa-

tion then yields r � �0 ¼ r � �1 ¼ 0, where

� 0 ¼ �p0IþAð1Þ0; (3)

� 1 ¼ �p1IþAð1Þ1 �Að2Þ0 � BAð1Þ0 �Að1Þ0; (4)

along with continuity r � u0 ¼ r � u1 ¼ 0. Here, B ¼
�2�2=�1. At OðDe0Þ the fluid motion satisfies the homo-
geneous Stokes equation, and the relative force is identi-
cally zero. Non-Newtonian effects appear at OðDeÞ, as a
‘‘non-Newtonian body force’’ r � ðAð2Þ0 þ BAð1Þ0 �Að1Þ0Þ
originating from gradients in the Newtonian velocity field.
In principle, obtaining the OðDeÞ velocity and pressure

fields requires solving the inhomogeneous Stokes (partial
differential) equations around two spheres—a tedious task.
Remarkably, however, one does not need these detailed
flow fields to compute the OðDeÞ relative forces. Instead,
the Lorentz reciprocal theorem provides a convenient route
to determine the forces on particles in weakly viscoelastic
[24] (or inertial [25]) flows. Let �aux and uaux be the stress
and velocity fields, respectively, of an auxiliary Stokes flow
around two spherical probes. Then, it is clearly true thatZ

Vf

½uaux � ðr � �1Þ � u1 � ðr � �auxÞ�dVf ¼ 0; (5)

where the integral is over the entire fluid volume.
Following Phillips [26], one can show from (5) that

U 1
aux � F1 þ U2

aux � F2 þ�1
aux �L1 þ�2

aux �L2

¼ �
Z
Vf

ðAð2Þ0 þ BAð1Þ0 �Að1Þ0Þ:ruauxdVf; (6)

where the superscripts 1 and 2 refer to each probe,Ui
aux and

�i
aux (i ¼ 1; 2) are the imposed translational and angular

velocities, respectively, on the probes in the auxiliary
problem, and Fi and Li are the OðDeÞ forces and torques,
respectively, on the probes in the second-order fluid. To
obtain the relative force FR we choose the auxiliary flow to
be that around two probes translating toward each other

with velocities U1
aux ¼ �U2

aux ¼ �Ûaux (with Ûaux a unit

vector). Hence, FR ¼ Ûaux � ðF1 � F2Þ and from (6)

FR ¼
Z
Vf

ðAð2Þ0 þ BAð1Þ0 �Að1Þ0Þ:ruauxdVf: (7)

Thus, the reciprocal theorem enables the non-Newtonian
OðDeÞ relative force FR to be expressed as the volume
integral of quantities that depend only on the Newtonian
OðDe0Þ flow, contracted with the gradient of the auxiliary
Stokes flow uaux. Specifically, with (2) we find

C1 ¼ � 1

2

Z
Vf

Að2Þ0:ruauxdVf; (8)

C2 ¼
Z
Vf

ðAð1Þ0 �Að1Þ0Þ:ruauxdVf; (9)

which are valid for either parallel or perpendicular probe-
pair translation and precisely correspond to the matrix
elements in (2). Notably, only the Newtonian OðDe0Þ
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velocity fields for parallel and perpendicular translation are
required, along with the auxiliary flow (Fig. 1). For parallel
translation, the velocity field is axisymmetric and thus can
be represented as derivatives of a stream function that
satisfies the biharmonic equation [27]. The velocity field
for perpendicular translation is three-dimensional; how-
ever, each velocity component can be written as the sum
of bispherical eigenfunctions of the Stokes equations [28].
Last, the auxiliary flow is axisymmetric, allowing again
for a stream function representation [29]. Since each flow
is represented in bispherical coordinates, we perform the
quadrature in (8) and (9) by using this coordinate system;
the integrands scale as R�6 for large distances R and are
hence absolutely convergent.

Figures 2 and 3 plot the parallel Cjj
i and perpendicular

C?
i matrix elements, respectively, versus probe separation

d=a. There is no critical separation where FR switches
sign, since these elements do not change sign at any d=a.
Hence, the nature of the relative force (repulsive or attrac-
tive) is determined solely by the values of �1 and �2.

Ardekani, Rangel, and Joseph [30] computed Cjj
i and C?

i

for the sole case of�1 ¼ �2�2 using the bispherical flow
solutions [27,28]. Our results are not subject to this strin-
gent restriction and are therefore significantly more gen-
eral. Phillips [26] considered the mobility problem of
probes subject to equal external forces and obtained the
equivalent matrix elements for d=a > 3 using a multipole
expansion. Our technique requires the resistance problem
of translation with equal velocities. The resistance and
mobility matrix elements are not generally equal, except
as d=a ! 1.

The coupling matrix C is invertible at all finite separa-
tions. Thus, NSCs can be recovered quantitatively from
measured relative forces. Experimentally, widely separated

probes are clearly undesirable, as C becomes singular as
d=a ! 1. Here, even small errors in measured relative
forces yield large errors in inferred NSCs. Indeed, the
optimal separation for such an experiment is that for which
�1 and �2 are least sensitive to errors in FR. A precise
metric of this sensitivity is provided by the matrix condi-
tion number �: The smaller the value of �, the less influ-
ence measurement errors in relative forces have on NSCs.

In the Euclidean norm, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�max=�min

p
, where �max and

�min are the maximum and minimum singular values of C,
respectively. Hence, the minimum � can attain is unity (in
any matrix norm). Figure 4 shows that � does not mono-
tonically decrease as the probes are brought closer. Instead,
it attains a minimum value at d=a � 1:75, representing the
optimal separation for experiments, at which �1 and �2

are least sensitive to errors in FR. Moreover, parallel jj and
perpendicular ? translations are the optimal pair of direc-
tions; it can be shown that translation at any other angle
relative to the line of centers gives a higher �.
Last, we comment on the potential experimental realiza-

tions of our technique. A possible setup involves holding

FIG. 1. The four Newtonian OðDe0Þ flow fields used to com-
pute non-Newtonian OðDeÞ relative forces between two spheri-
cal probes via the reciprocal theorem: (a) parallel translation
with equal velocities U [27]; (b) the ‘‘auxiliary’’ flow around
probes translating toward one other [29]; (c) translation of non-
rotating probes; and (d) counterrotating probes that do not
translate. The velocity field for perpendicular translation of
freely rotating probes is a combination of (c) and (d), where
the angular velocity � in (d) is chosen such that the torque on
each probe in the composite ‘‘ðcÞ þ ðdÞ’’ flow is zero [28]. Here,
d=a ¼ 1:75 corresponding to the minimum in the coupling
matrix condition number (Fig. 4).

2d
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d / a − 1ε = 

C2
||

= +F
1C

1 2C
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|| || ||Ψ Ψ
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U U
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R

FIG. 2. Matrix coefficients Cjj
1 and Cjj

2 versus probe separation
� ¼ d=a� 1 for translation along line of centers.
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2a
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d / a − 1ε = 

R
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1C 2C
1

Ψ 2Ψ
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1
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FIG. 3. Matrix coefficients C?
1 and C?

2 versus probe separation
� ¼ d=a� 1 for translation perpendicular to line of centers.
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the two probes at a fixed separation in a dual optical trap, as
a stage containing the complex fluid is translated past them
with speed Ustg. The trapping force on each probe is

measured, and the difference between forces equals the
relative force FR due to non-Newtonian fluid flow. In the
second-order-fluid limit (De< 1), FR �U2

stg. At larger De,

FR is expected to be a more complicated function of Ustg,

owing to stronger nonlinear effects such as a shear-rate-
dependent viscosity. Hence, FR can be measured for
increasing Ustg, and the region over which FR=U

2
stg is

constant is where our proposed technique is valid.
For probes of radius a ¼ 1 �m, the trapping force in

optical tweezers is of the order of Ftrap � 0:1–10 pN [8].

Hence, for Ustg � 10–1000 �m=s, to first hold the probes

against Stokes drag sets a viscosity window of � ¼ Ftrap=

6�aUstg � 0:01–50 mPa � s. Furthermore, Ftrap prevents

relative motion due to NSCs for �1;�2 � Ftrap=U
2
stg �

0:0001–100 mPa � s2. This last range is too low to be
accessed by almost all existing methods; thus, our tech-
nique may offer a highly sensitive measurement of NSCs.

Our technique is applicable to colloidal dispersions.
Scaling arguments yield �1;�2 �	2�De= _� for dilute
hard-sphere dispersions at small De [31]. Here, 	 is the
(small) volume fraction of ‘‘bath’’ colloids and De ¼
tr=tf ¼ ðb2=DÞ=ða=UstgÞ, where b and D are the radius

and diffusivity of a bath colloid, respectively, and _� ¼
Ustg=a. By using reasonable experimental values of � ¼
10 mPa � s, b ¼ 0:1 �m, and 	 ¼ 0:1 [8,9], Ustg <

20 �m=s is required to maintain De< 1, within the range
of accessible stage speeds. Further,�1;�2 � 0:005 mPa �
s2 for Ustg ¼ 20 �m=s; hence, the NSCs are within the

measurable range from above. We anticipate that our tech-
nique can measure NSCs of other complex fluids in which

probes can be optically trapped, such as polymer or worm-
like micelle solutions. Therefore, we expect the present
work to spur a new experimental thrust in nonlinear
microrheology and, importantly, allow for a quantitatively
accurate microrheological measurement of a nonlinear
rheological property.
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