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Synchrotrons and storage rings deliver radiation across the electromagnetic spectrum at high repetition

rates, and free electron lasers produce radiation pulses with high peak brightness. However, at present few

light sources can generate both high repetition rates and high brightness outside the optical range. We

propose to create steady-state microbunching (SSMB) in a storage ring to produce coherent radiation at a

high repetition rate or in continuous wave mode. In this Letter we describe a general mechanism for

producing SSMB and give sample parameters for extreme ultraviolet lithography and submillimeter

sources. We also describe a similar arrangement to produce two pulses with variable spacing for pump-

probe experiments. With technological advances, SSMB could reach the soft x-ray range (< 10 nm).
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Introduction.—In a radiation source driven by coherent
electrons, particles group into microbunches spaced at the
wavelength of the desired light. The resulting coherent
light can be orders of magnitude brighter than that of an
equivalent incoherent source. The free-electron laser
(FEL) process, for example, turns a constant stream of
electrons into a series of microbunches, which then radiate
coherently.

For high average power light sources, duty-cycle shares
the stage with coherence. Linac driven FELs use each
electron pulse once, leading to low duty cycles. (Energy
recovery linacs reach high duty cycles by recovering the
electron energy [1–3].) Storage rings, by contrast, naturally
provide MHz repetition rates, and fully filled rings can
provide cw radiation. However, storage rings do not gen-
erally support sustained microbunching.

Using an optical or rf modulation, we propose to micro-
bunch stored electrons during each pass through a radiator.
Though the electrons may appear smeared elsewhere in the
ring, the microbunching (MB) is permanent at the radiator,
so we consider this SSMB. The result is a coherent radia-
tion source with MHz to cw repetition rate.

In a conventional storage ring, rf ‘‘buckets’’ both accel-
erate and trap electrons. The rf modulation accelerates
electrons in front of the stable point (which then slip
backward because of dispersion) while decelerating elec-
trons behind the stable point (which then slip forward), so
that all particles tend to move toward the stable point.
Instead of a continuous stream of electrons, we find a train
of tightly ‘‘bunched’’ beamlets spaced at the rf wavelength.
Replacing the rf with an optical laser results in a beam
bunched at optical wavelengths [4].

The drawback to bucket bunching is that the output
radiation is limited to the initial radiation wavelength; to
produce high power radiation at awavelength,�out, we need
bunching at �out, which in turn requires high power radia-
tion at �out. Instead, we propose to modulate with an easily

available initial wavelength (e.g., optical) �in, but generate
stable points distributed at either a harmonic or amultiple of
�in. To distinguish harmonic or multiplied bunching from
conventional rf buckets, we will refer to trapping at �out �
�in as MB. For example, seeding with �in between 200 nm
and 2 �m (easily available from commercial sources), we
can produce MB at wavelengths ranging from �out ¼
13:5 nm to 1 mm. We note that single-shot versions of
MB (�in � �out) are mainstays of FEL seeding [5,6].
SSMB mechanism: Zero-crossing SSMB.—In general,

particles bunch around stable fixed points. A particle is at
a fixed point in phase space if, after T turns around the ring,
the particle returns to its initial coordinates; with a one turn
mapM, a fixed point exists in phase space at X0 ¼ ðz; pÞ if
MTX0 ¼ X0. Each rf bucket contains only one fixed point
per wavelength (at z ¼ m�in, p ¼ 0, for integersm), so the
standard rf bucket generates bunching, not MB.
In all discussions, energy, p � E� Ebeam, and position,

z, are given relative to the ideal electron defined as pI � 0,
zI � 0. We will consider the case of operation above
transition. Below transition, the slippage reverses.
As an example of MB, we return to the particle at a zero

crossing of a sine modulation. Instead of p ¼ 0, we now
consider a particle with a special energy p ¼ �p, such that
the particle slips backward by �z ¼ �in each turn due to
dispersion. The particle does not return to its initial posi-
tion, but because of the modulation’s periodicity, the par-
ticle moves to an equivalent zero crossing, so we still
consider this to be a fixed point. At each zero crossing,
we find a set of such fixed points arrayed at energies p ¼
n�p, for n ¼ 0, �1, �2, etc. Fixed points with positive
(negative) energies slip backward (forward) n wavelengths
per turn.
After a full turn, at the ring’s modulation point, the

microbunches stack at z ¼ m�in, with one stack per modu-
lation wavelength, i.e., the electrons are bunched at �in.
However, after a fraction, 1=H, of a turn, the fixed points
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have slipped only �z ¼ n�in=H, and the particles are
spaced at the Hth harmonic of �in, i.e., are microbunched
at �out ¼ �in=H (Fig. 1).

Double modulations.—For a general account of the
SSMB principle we describe a two-stage system; multiple
modulation and dispersive regions improve control of
phase space at a small cost in complexity (Fig. 2). We
break each turn into 4 steps:

z1 ¼ z0; p1 ¼ p0 þFaðz0Þ
z2 ¼ z1 þRðaÞ

56 p1; p2 ¼ p1

z3 ¼ z2; p3 ¼ p2 þFbðz2Þ
z4 ¼ z3 þRðbÞ

56 p3; p4 ¼ p3:

(1)

In step 1, we apply a modulation to the beam energy,

Faðz0Þ. In step 2, dispersion RðaÞ
56 converts the change in

energy to a change in position. We then repeat with a

second modulation, Fbðz2Þ, and dispersive section, RðbÞ
56 .

We find single turn (T ¼ 1) fixed points whenever we
satisfy the slippage condition:

�zonepass ¼ RðaÞ
56 p1 þ RðbÞ

56 p3 ¼ n�in;

�ponepass ¼ Faðz0Þ þ Fbðz2Þ ¼ 0
(2)

for n ¼ 0, �1, �2, etc.
Most generally, we are looking for any combination of

RðaÞ
56 , R

ðbÞ
56 , Fa, Fb such that the resulting fixed points have a

clean, periodic structure. In our previous example (fixed
points at the modulation zero crossing), we set Faðz0Þ ¼
Fbðz2Þ ¼ 0 and RðaÞ

56 ¼ RðbÞ
56 . However, other manipulations

are possible. For example, setting Faðz0Þ ¼ �Fbðz2Þ,
so that the two modulations cancel, also produces har-
monic SSMB. (Canceling modulations produce clean har-
monic structure only for sawtooth waveforms, Fa;b ¼
Va;bmod�z.) Steady-state echo enabled harmonic genera-

tionmay be capable of driving SSMBat high harmonics [6].

Analysis of linearized modulation.—For simulations
we consider modulations Fa;b ¼ Va;b sinðkzÞ. To study

the zero crossing fixed points analytically, we linearize
the modulation, Fa;bðzÞ � ha;bz, with ha;b � Va;b=k, and
write the one turn map as a matrix

M ¼ 1 RðbÞ
56

0 1

 !
1 0
hb 1

� �
1 RðaÞ

56

0 1

 !
1 0
ha 1

� �

¼ 1þ sð2þ ð1þ sÞ�Þ s
ha
ð2þ s�Þ

hað1þ ð1þ sÞ�Þ 1þ s�

 !
;

(3)

with RðaÞ
56 ¼ RðbÞ

56 � s=ha and � � hb=ha. The stability

condition, jTrMj< 2, constrains

� 4< 2ðsþ s�Þ þ s2�< 0: (4)

We also write down an equilibrium bunch length using the
Courant-Snyder parameters, hz2i ¼ �" and h�2i ¼ �",
yielding

hz2i ¼ �s
2þ s�

ð1þ �þ s�Þ
h�2i
h2a

; (5)

suggesting that s���2 can substantially reduce the
island size, increasing the maximum possible harmonic.
In reality, energy changes from damping and quantum
excitation, combined with dispersion, will increase hz2i.
However, in simulations we do observe moderate bunch
compression as s� ! �2.
Long wavelength beating.—It is possible to generate MB

with �out � �in by using different input wavelengths,
�in2 ¼ ½b=ðb� 1Þ��in1 [7]. The wavelength beating results
in periodicity at �out ¼ b�in1, with the potential to set
b � 1. We can drive SSMB from frequency beating in
two ways. For a double modulation (separate modulation
and dispersive regions for each wavelength), stable fixed
points survive only where the phases overlap construc-
tively, resulting in sets of fixed points separated by the
beat wavelength, �out. For a single modulation (beating the

FIG. 1 (color online). An illustration of harmonic SSMB for
H ¼ 3. At top, we show particles in phase space at the modu-
lator. Each turn around the ring, particles slip forward or back-
ward from dispersion, but the distribution is stationary for a
periodic modulation. At bottom, at an intermediate point in the
ring (1=H the way around), the microbunches are spaced by
�in=H, i.e., the beam is microbunched with �out ¼ �in=H.

FIG. 2 (color online). Example schematic for a two-stage
system. A laser cavity and two undulators of length Lu and
1:9Lu modulate the electron beam at opposite ends of a storage
ring. SSMB from the modulation and dispersion produces co-
herent light in a radiator. rf modules could replace the laser
modulation to produce long wavelengths, and an additional
radiator could be placed at the same distance in front of Lu.

PRL 105, 154801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 OCTOBER 2010

154801-2



lasers prior to modulation, or equivalently using a single
dispersive region), stable fixed points survive across �out.
However, if we rely on the modulation to replace the
synchrotron radiation energy loss, �, fixed points will only
survive where the combined modulation, Va cosðkazÞ þ
Vb cosðkbzÞ, is larger than �. For � & Va þ Vb, stable fixed
points remain only where the phases overlap, near
mod�outz ¼ 0, again resulting in SSMB at the beat wave-
length, �out (Fig. 3).

Radiation source from SSMB: Extreme ultraviolet
source.—For each turn around the ring, the SSMB beam
passes through a radiator (e.g., an undulator). Matching the
MB wavelength to the resonant wavelength of an undulator
strongly amplifies the radiation brightness. As a first ex-
ample, we consider the feasibility of SSMB at the extreme
ultraviolet (EUV) lithography standard, 13.5 nm. To pro-
duce a stable, high power cw modulation, we overlay the
storage ring with a laser cavity and two undulators, with a
third undulator for output (Fig. 2). In general, a laser
modulation does not involve any average energy transfer.
However, in the absence of an rf bucket, the modulation
process replaces the radiative energy loss.

We illustrate the concept with a simulation that tracks
the 4D particle coordinates (z, p, x, x0) through a large
number of passes around the ring. The simulation includes
both energy loss (�) and quantum fluctuations (�) from
synchrotron radiation, as well as first and second order
momentum compaction (R56, T566) and transverse trans-
port elements (R51, R52). We model jitter errors by shifting
the modulation relative to the particles on a turn-by-turn
basis. We assume an initially flat-top longitudinal distribu-
tion with Gaussian transverse profile of radius �x, �x0 ,
though we note the two synchrotron radiation terms, �
and �, will determine the equilibrium unmodulated energy
spread (��). Periodic boundary conditions allow for slip-
page across many wavelengths.

For a 13.5 nm source, we simulate a 500 MeV ring,
modulated at �in ¼ 200 �m and look for SSMB at the
15th harmonic (Table I). To maintain the short wavelength
SSMB we require a large energy aperture (� 6%) and a
laser cavity with a strong 50 MW stored power, though
only with a few kWof cw input power. Stability of the laser
is assumed to be 0.005� in phase and 0.005% in amplitude.
Choosing � ¼ 1:9, after 10	 106 turns we then observe
trapping of �15% of the particles with strong SSMB
(Fig. 4). (A large ring with weak bends may permit
decreased laser power and energy aperture, but we have
not explored ring optimization.)
THz and pump-probe sources.—We also provide two

illustrations of long wavelength SSMB. Rings operating
with low momentum compaction factors have produced
coherent radiation from isolated, short pulses with �z <
�out [8,9]. With a coherent train of pulses from frequency
beating SSMB, we propose to generate high average power
THz radiation. As an example, we simulate �in1 ¼ 2 �m
and multiplying factor b ¼ 250 for a 500 MeV ring with
realistic damping and energy spread (Table I). With laser
stability of 0.01� in phase and 0.01% in amplitude, we find
strong bunching at �out ¼ 500 �m. Better laser stability
would permit lower ring energy.
Alternatively, rf modulations could be used to drive

pump-probe experiments, which use two pulses, separated
by a variable time delay, to study dynamical systems.
Using SSMB to create two microbunches, a variable dis-
persive strength between the modulation and the radiator
would change the time delay between pulses. While not
coherent, an SSMB pump-probe at a multi-GeV ring
(Table I) would radiate in the x-ray regime. As a side
benefit, the difference in energy of the two bunches leads
to slightly different radiation wavelengths. Such ‘‘two-
color’’ output helps users distinguish the pump and probe
pulses. We note that two-color double pulses have previ-
ously been observed from 	 buckets [10].
Technical challenges.—Operating modes with low

momentum compaction factor produce short bunches,
creating large ratios of peak current to average current.
To prevent the amplified peak currents from driving longi-
tudinal instabilities, the average currents are typically very
low [8,11–13]. However, the SSMB process spreads parti-
cles evenly across many microbunches in each bucket,

FIG. 3 (color online). Phase space for harmonic SSMB at left
and frequency beating at right (with b ¼ 10), with two-stage
modulations on top and one-stage modulations below. For har-
monic SSMB, two-stage modulations provide a cleaner phase
space with shorter stable regions. For frequency beating, the one-
stage phase space has stable islands throughout �out ¼ b�in, but
radiative energy loss removes the side islands.

TABLE I. Example parameters.

EUV THz Pump-probe

Rad. wavelength (�out) 13.5 nm 500 �m NA

Seed wavelength (�in) 200 nm 2.0,2:008 �m 1 cm

Modulation amp. (Va) 1 MeV 350 keV 15 MeV

Dispersion (Ra þ Rb) 30 �m 0.9 mm 0.6 m

Beam energy (E) 500 MeV 500 MeV 3 GeV

Damp. decrement (�) 5	 10�6 5	 10�6 3	 10�4

Equil. E spread (��) 3	 10�4 5	 10�4 1	 10�3
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so that the ratio of peak to average current is approximately
the harmonic number, H, or smaller (Fig. 4). We then
expect the SSMB process to support relatively large
average currents despite the small momentum compaction
factor.

SSMB is relatively immune to static errors in laser phase
(
), modulation amplitude (V), and dispersion (R56)
between the two stages. For steady-state solutions, static
errors only shift the equilibrium fixed points. From
the EUV simulation we find �
< 5�, �V < 5%,
�R56 < 1% and T566 & R56 do not inhibit SSMB.

However, SSMB is potentially sensitive to stability
errors, especially for long damping times. Small jitters in
timing between the laser and electron bunch may accumu-
late and smear out the structure, requiring high phase and
amplitude stability. If the laser cavity cannot achieve the
required stability, the electron bunch itself could serve as
the modulation source, intrinsically locking the electrons
to the modulation. Self-modulation is possible for manipu-
lations which generate bunching at �in; in Fig. 4, we see
nearly 100% bunching at �in at the modulation point
(top left). However, self-modulation will increase the am-
plitude jitter.

The tightest constraints come from transverse transfer
elements, R51, R52, which will detrap particles and
lengthen the SSMB unless R51�x, R52�x0 
 �in, �out.
Particles with the largest x, x0 values are lost, which
may result in shrinking of �x, �x0 . It is interesting
to note that keeping the transverse coordinates fixed
(i.e., integer transverse tune, �) adjusts the slippage

condition (Eq. (2)) by R56p ! R56pþ R51xþ R52x
0. The

constraints on R51�x and R52�x0 then relax, but practically
it would be difficult to operate a ring close to an integer
tune.
Conclusion.—We present a mechanism for producing

SSMB in a storage ring. The combination of dispersion
and modulation regions produces fixed points (and thus
SSMB) at harmonics or multiples of the modulation wave-
length. We acknowledge that preserving fine SSMB will be
challenging, and briefly discuss some potential technical
requirements. A proof of principle may be possible at long
wavelengths, and we will address practical design issues in
future studies.
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FIG. 4 (color online). Simulation of a two-stage manipulation
to produce SSMB. After 10	 106 revolutions, we find bunches
stacked at steady state in energy space (top left). After an
additional dispersive section of R56=15, we find SSMB at the
15th harmonic (top right). The density profile is shown bottom
left, with the Fourier transform bottom right.
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