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Linear transient growth analysis is commonly used to suggest the structure of disturbances which are

particularly efficient in triggering transition to turbulence in shear flows. We demonstrate that the addition

of nonlinearity to the analysis can substantially change the prediction made in pipe flow from simple

two-dimensional streamwise rolls to a spanwise and cross-stream localized three-dimensional state. This

new nonlinear optimal is demonstrably more efficient in triggering turbulence than the linear optimal

indicating that there are better ways to design perturbations to achieve transition.
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Shear flows are ubiquitous in nature and engineering,
and understanding how and why they become turbulent has
huge economic implications. This has led to a number of
simplified canonical problems being studied such as plane
Couette flow, channel flow, and pipe flow which commonly
exhibit turbulent behavior even when the underlying lam-
inar state is linearly stable. In this case, a finite-amplitude
perturbation is required in order to trigger turbulence and a
leading question is then what is the ‘‘most dangerous’’ or
‘‘smallest’’ such perturbation (with the metric typically
being energy). Beyond its intrinsic interest, such informa-
tion is fundamentally important for devising effective
control strategies to delay the onset of turbulence.

Linear transient growth analysis has commonly been
used to suggest the structure of such dangerous disturb-
ances [1], the basic premise being that disturbances which
experience the most (transient) growth are also most effi-
cient at modifying the underlying shear to produce insta-
bility and probable transition to turbulence [2,3]. Recent
improvements in our understanding of the laminar-
turbulent boundary or ‘‘edge,’’ which determines whether
a given initial condition leads to a turbulent episode or to
the laminar state, has supported this idea albeit extended
to disturbances of finite amplitude. This is because some
regions of this boundary have a much smaller energy level
(e.g., [4]) than the attracting region of the boundary-
confined dynamics [5] so that the minimum energy point
on the edge (the most dangerous disturbance) must expe-
rience considerable energy growth as it sweeps up to the
attracting plateau.

However, there are two tacit assumptions in using linear
transient growth to identify critical disturbances: (1) that
the energy growth experienced by the most dangerous
disturbance is the largest (or near largest) possible at the
critical energy, and (2) that the optimal disturbance which
emerges from linear transient growth analysis reasonably
approximates the finite-amplitude optimal for the properly
nonlinear growth calculation. Efforts to test these assump-
tions have concentrated on very small dimensional systems

[6] or restricted the search for dangerous disturbances
within small subspaces [3,4] with broadly supportive
results. The only study to specifically test assumption (2)
used the Blasius approximation for the boundary layer [7]
and found no qualitative difference between the nonlinear
and linear optimals.
In this Letter, however, we show for the first time using

the full Navier-Stokes equations how nonlinearity can
fundamentally change the optimal which emerges from a
transient growth analysis in pipe flow at subcritical energy
levels, thereby contradicting assumption (2). The signifi-
cance of this new state is that (a) it provides a much more
efficient way to trigger transition than the linear optimal,
and (b) it is three dimensional and shows signs of local-
ization thereby appearing more physically relevant than the
two-dimensional streamwise-independent linear optimal.
The transient growth problem is the optimization ques-

tion: what initial condition uðx; t ¼ 0Þ (added as a pertur-
bation to the laminar flow) for the governing Navier-Stokes
equations with fixed (perturbation) kinetic energy E0 will
give rise to the largest subsequent energy ET at a time
t ¼ T later. This corresponds to maximizing the functional
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where h i represents volume integration; (s, �, z) are
cylindrical coordinates directed along the pipe; �, �ðx; tÞ,
�ðx; tÞ and �ðtÞ are Lagrange multipliers imposing the
constraints of initial energy E0, that the Navier-Stokes
equations hold over t 2 ½0; T�, incompressibility and con-
stant mass flux in time, respectively (the system has been
nondimensionalised by the pipe diameter D and the bulk
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velocity U so that Re :¼ �UD=� where � is the density
and � is the dynamic viscosity, and the laminar flow is
2ð1� 4s2Þẑ). Vanishing of the variational derivatives re-
quires that u must evolve according to the Navier-Stokes
equations, � evolves according to the adjoint-Navier-
Stokes equations and at times t ¼ 0 and T we have opti-
mality and compatibility conditions linking the two sets of
variables (e.g., see [8] for details of the linearized prob-
lem). The method of solution is one of iteration as follows:
(i) Make an initial guess for uðx; t ¼ 0Þ and allow the flow
to evolve according to the Navier-Stokes equations until
t ¼ T. (ii) Solve the compatibility condition for �ðx; TÞ,
�L=�uðx; TÞ � uðx; TÞ � �ðx; TÞ ¼ 0. (iii) Allow the
incompressible field �ðx; tÞ to evolve backwards in time
until t ¼ 0 via the adjoint-Navier-Stokes equations
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(iv) Move uðx; 0Þ in the direction of the variational deri-
vative �L=�uðx; 0Þ � ��uðx; 0Þ þ �ðx; 0Þ to increase L
and repeat.

The algorithm should converge if E0 does not exceed the
critical energy for transition. Beyond this, sensitivity to
initial conditions when uðx; TÞ reaches the turbulent state
will lead to nonsmoothness.

Both direct and adjoint equations were solved using a
fully spectral, primitive variables approach. Time stepping
was done using a second order fractional step scheme,
checked carefully against the code of [9]. The computa-
tional domain was a short periodic domain of length �
radii with typical spatial resolution of 29 real Fourier
modes azimuthally, 11 real Fourier modes axially, and
25 modified Chebyshev polynomials radially in each of
the 8 scalar fields (us, u�, uz, p, �s, ��, �z,�). All results

have been checked for robustness to resolution changes.
Retention of the nonlinear terms poses a fresh technical
challenge: although the adjoint equation is linear in �, it is
dependent on the evolution history of the forward variable
u which now must be stored.

The linear transient growth optimal ulinðx; ReÞ in pipe
flow is well known to be streamwise independent (2D)
rolls which evolve into much larger streamwise-
independent streaks [1]: see Figs. 1 and 2. Maximum
growth occurs at Tlin � 12:2� Re=1000ðD=UÞ [10]. In-
troducing nonlinearity (i.e., increasing E0 from 0), setting
T ¼ 12:2� Re=1000ðD=UÞ and allowing only 2D flows,
leads smoothly to a modified 2D optimal u2Dðx;E0;ReÞ
with monotonically decreasing growth consistent with
previous simulations [2]. Opening the optimization up
to fully 3D flows initially just recovers the 2D result but
once E0 crosses a small threshold E3D (1:35� 10�5 at
Re ¼ 1750), a completely new optimal u3Dðx;E0;ReÞ
appears. This 3D optimal emerges from the optimization
procedure after it initially appears to converge to the 2D

optimal and then transiently visits an intermediate state;
see Fig. 3. Identifying this ‘‘loss of stability’’ of the 2D
optimal provided an efficient way to compute E3DðReÞ.
All optimization results were robust over three very dif-
ferent choices of starting flow: (a) ulin with noise, (b) the
asymmetric traveling wave [11], and (c) a turbulent flow
snapshot (all rescaled to the appropriate initial energy).
This supported our supposition that the algorithm samples
all possible flows of a given energy to select the global
optimizer, although no proof is available.
Given the intensity of the runs [Oð200Þ iterations

and each iteration requires integrating forwards and back-
wards over the period ½0; T� ], one other Reynolds number,
Re ¼ 2250, was selected to confirm our findings. Here, the
new 3D state becomes the nonlinear optimal at E3D ¼
4:8� 10�6 and has essentially the same appearance as at
Re ¼ 1750; see Fig. 2. Unlike the linear optimal which is
globally simple in form and undergoes an evolution that is
well established (rolls advecting the mean shear to gener-
ate streaks), the 3D optimal is localized to one side of the
pipe and initially has both rolls and streaks of comparable
amplitude. Figures 1 and 2 show a new two-stage evolu-
tion: a preliminary phase when the flow delocalizes fol-
lowed by a longer growth phase where the flow structure
stabilizes to essentially two 2D large-scale slow streaks
sandwiching one fast streak near the boundary.
For E0 > 2� 10�5 at 1750 and 6:25� 10�6 at 2250, the

iterative procedure fails to converge. In either case, a direct
numerical simulation starting with the 3D optimal at the
highest energy value yielding convergence does not reveal
a turbulent episode. This implies that the critical energy
level, EcðReÞ, for transition has not been reached [12]. The
reasons for this energy ‘‘gap’’ are unclear and leave open
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FIG. 1 (color online). The evolution of the linear and nonlinear
optimals at Re ¼ 1750. The blue (upper) line corresponds to the
nonlinear optimal for E0 ¼ 2� 10�5 while the red (lower) line
is the linear optimal (E0 ! 0). The nonlinear result produces
more growth and actually reaches its maximum at a slightly
earlier time than T.
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the possibility that a further new optimal may emerge. It is
worth noting that the end state of the 3D nonlinear optimal
decays more quickly that of the 2D optimal (which is in
fact a close approximation of the least decaying eigen-
mode). Increasing the optimization time T will therefore
lead to the recovery of the 2D optimal at larger values of

E0. We then expect to able to converge onto the 3D optimal
at correspondingly larger values of E0, allowing the gap
from E3D to Ec to be closed.
What can be tested, however, is whether the 3D optimal

is more efficient at triggering turbulence than the linear
optimal when rescaled. Taking the initial condition
Au3Dðx; 2� 10�5; 1750Þ, we gradually increase the rescal-
ing factor A until E0 ¼ EcðReÞ is reached. Calculating
the corresponding quantity for the linear optimal turns
out to be less clearly defined because some 3D noise is
needed to trigger turbulence. As a result we make 2 differ-
ent estimates, one strictly conservative and the other more
realistic. The first Elin

s is obtained by taking Aulinðx; 1750Þ
and finding the initial energy for which the resultant streaks
are just linearly unstable in this periodic domain [2,3]. In
the second Elin

c , the same initial condition was used but
0.1% of the most unstable perturbation (as found from the
previous computation) is added to the streaks when they
reach maximum amplitude. Elin

s should be a (low) conser-
vative estimate but even this is Oð10Þ times larger than
Ec at Re ¼ 2500—see Fig. 4—whereas the more realistic
Elin
c is Oð100Þ times larger.
In Fig. 5 (inset) we plot E3D, Ec, and Elin

s as a function of
Re which emphasizes that the 2D optimal (for which the
linear result is an excellent approximation) ceases to be a
global maximum at an energy (at least) several orders of
magnitude before it approaches the laminar-turbulent
boundary. The 3D optimal, in contrast, crosses the
laminar-turbulent boundary only shortly after it emerges
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FIG. 3 (color online). Re ¼ 1750, E0 ¼ 2� 10�5. The itera-
tions are seeded with a noisy version of the 2D optimal which
converges to the 3D optimal by way of an intermediate ‘‘saddle’’
state (shown).

FIG. 2 (color online). Three snapshots of the linear optimal
(top) and five snapshots (middle and bottom) of the 3D optimal
for Re ¼ 1750 and E0 ¼ 2� 10�5 during its evolution. Labels
refer to Fig. 1, arrows indicate cross-sectional velocities, and
colors axial velocity beyond the laminar flow (white or light for
positive and red or dark for negative: outside shade represents
zero). The bar chart shows the ratio of energy in each streamwise
Fourier mode of the initial nonlinear optimal (a).
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FIG. 4 (color online). Re ¼ 2500. The green (lowest at t ¼
50D=U) line shows the evolution of the 3D optimal when given
initial energy Ec. Because it is on the laminar-turbulent boundary
two nearly identical initial conditions diverge after, in this case,
220D=U. The blue (middle at t ¼ 50D=U) line is the evolution
of the 2D optimal for the exact initial energy Elin

s for which the
streaks become linearly unstable. The red (upper at t ¼ 50D=U)
line shows the 2D optimal given initial energy Elin

c and allowed to
evolve until it reaches a maximum amplitude whereupon 0.1%
by amplitude unstable perturbation is added. Again the laminar-
turbulent boundary can be identified.
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at E3D (e.g., at � 5� 10�5 where E3D ¼ 1:35� 10�5

at Re ¼ 1750). This means that the energy growth
experienced by the 3D optimal must increase dramatically
with E0, which is illustrated in Fig. 5 at Re ¼ 1750: this
growth is now a lower bound on the maximum possible for
E0 > 2� 10�5. Assuming that a 3D optimal will always
appear at subcritical energies (reasonable as the 2D distur-
bance cannot trigger turbulence), the critical energy must
be bounded from below by E3D and above by Ec.

In this Letter we present the first demonstration that
including nonlinearities in the problem of transient growth
substantially changes the form of the optimal at energies
below that needed to trigger turbulence. The significance
of this result comes from the fact that transient growth
analysis is currently the only constructive approach (albeit
with assumptions) for identifying critical disturbances
beyond exhaustive searches over initial conditions. As a
result, the new 3D optimal found here supersedes the linear
optimal as our current best theoretical prediction for the
most dangerous disturbance in pipe flow.

There are two key directions for improving the result
presented here: performing a further growth maximization
over T and adopting larger, more realistic flow domains.

Both represent formidable extensions even with today’s
computing power. After all, the discovery of the first true
nonlinear optimal has had to wait almost two decades after
the linear result was established in pipe flow. In larger
domains, we expect further localization of the nonlinear
optimal since energy is defined as a global quantity,
whereas nonlinearity is important wherever the velocity
field is locally large. This strongly suggests that in a long
pipe the optimal should localize fully (i.e., in the axial
direction as well) which would make it an interesting focus
for experiments.
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FIG. 5 (color online). The effect of the initial energy on the
growth ofAulin (red) andAu3Dðx; 2� 10�5; 1750Þ (blue) atRe ¼
1750. For small E0 the 2D result is the optimal but after E3D ¼
1:35� 10�5, the 3D optimal takes over. The vertical dashed line
corresponds to Ec, with the dotted lines being the relevant error
bars. Inset: The dependence of E3D (blue or lowest), Ec (green or
middle), and Elin

s (red or upper) on Re (Elin
c is even higher). For

Re< 2000, error bars on Ec indicate the energy range over which
short to extended turbulent episodes are triggered.
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