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(Received 22 December 2009; published 5 October 2010)

The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and

nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous

discrete bifurcations between periodic regimes are observed. We introduce a model based on an

approximation that makes this problem tractable. This allows us to derive analytical formulae that predict

the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of

a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the

key parameters of the system. We discuss the validity and limitations of our model which describes

semiquantitatively both numerical simulations and microfluidic experiments.
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Understanding the flow of discrete elements through
networks is of importance for diverse phenomena, includ-
ing microfluidics for controlled droplet traffic [1], blood
flows for functioning cardiovascular systems [2], and even
road traffic for optimized road networks [3]. Addressing
this issue requires a description of the mechanisms that
govern flow partitioning at a node. In most cases, splitting
rules are complex since they often involve either human
decision-making or noise [2,4]. Droplet traffic thus appears
as a model system since a droplet reaching a node simply
flows in the arm having the largest volumetric flow rate [5].
Despite this robust and simple rule, this paradigmatic
system exhibits complex dynamics, also observed in cel-
lular automata [6], resulting from iterations of simple rules
and time-delayed feedback [7–11]. The presence of drop-
lets in a channel modifies its hydrodynamic resistance so
that the path selection of a droplet at a node is affected by
the trajectories of the previous ones. This yields periodic
patterns that are common to any traffic flow. The widely
studied situation of a droplet flowing through a loop leads
to the emergence of a wealth of bifurcations between
different periodical partitioning regimes with discrete pe-
riods and aperiodical regimes [7–11]. Even in this simple
configuration, an understanding of the physical parameters
and relations that completely describe the dynamical
response has remained elusive or limited to specific
configurations.

Here we introduce an approximation that allows the
theoretical description of the complex dynamics of droplet
traffic through a loop. Using this working hypothesis, we
derive analytical formulae that (i) predict the occurrence of
the bifurcations between consecutive periodical regimes,
(ii) establish selection rules for the period of a regime, and
(iii) describe the evolutions of the period and complexity of
droplet pattern in a cycle with the key parameters of the
system. These predictions capture the main features of
numerical simulations [7,9,11]. Our findings also underline

the crucial role of natural noise, intrinsic in experiments, in
evidencing multistability between periodic states. Indeed,
our microfluidic experiments can be rationalized when
natural noise (i.e., stochastic shifts of the droplet position
or size) is introduced in our model.
We consider a periodic train of droplets reaching

the inlet node of an asymmetric loop having two arms
of different lengths L1 and L2 with � ¼ L2=L1 > 1
[Fig. 1(a)]. The monodisperse droplets emitted at a con-
stant period � flow at a velocity v ¼ �

� , where � is the

distance separating two droplets. At the inlet node, a
droplet flows into the arm having the lower hydrodynamic
resistance. When � is larger than a value �f, all droplets

flow into the shorter arm; the device acts as a filter [4]. As �
decreases, the droplets which flow into the short arm may
increase its hydrodynamic resistance sufficiently so that it
eventually overcomes that of the long arm. When � < �f,

partitioning of the droplets between the two arms is ob-
served so that the hydrodynamic resistances of the two
arms remain nearly equal in the steady state. In this regime,
the binary ‘‘choice’’ made by each droplet modifies the
instantaneous hydrodynamic resistance of the ith arm in
which it flows (/ Li þ NiLd) and consequently affects the
path selection of the following droplets; Ni is the number
of droplets present in the ith arm, and the length Ld

corresponds to the excess hydrodynamic resistance per
drop. This collective time-delayed feedback mechanism
[7–11], for which delays are related to the retention times
of the droplets in the loop, yields the complex dynamics
that we aim to understand.
Analyzing these dynamics is challenging because of the

nonlinear nature of the time delays due to the coupling
between Ni and vi, the droplet velocities in arm (i) [12],
and the splitting rules. In the repartition regime, the mean
droplet velocity in each arm in the steady state hvii is
nearly v

2 [10]. In this Letter, we assume that vi is constant

and equal to v
2 . This ‘‘mean-field’’ approximation makes
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the problem tractable and is justified when working within
the limit Ld � Li þ NiLd, for which the variations of vi,
due to the entrance or exit of a droplet in the loop, is small
(� 1% in our study).

Using this approximation, we begin by deriving the
algorithm that governs the flow, building on earlier works
[7,9,10]. The time is discretized in � units and, as velocities
are constant, space is also discretized: possible droplet
positions in the loop are multiple of �=2, which yields a
finite number of possible configurations. Moreover, since
our model is deterministic, only periodic outcomes are
expected. Partitioning occurs such that a droplet flows
into the arm having the smaller hydrodynamic resistance,
and we code the resulting binary choices into series of 1
(one droplet flows in the short arm) and 0 (one droplet
flows in the long arm, i.e., a ‘‘hole’’ flows in the short arm)
[Fig. 1(b)]. This can be written as Hð�nÞ where H is the
Heaviside function and �n ¼ ðL2 � L1Þ=Ld þ N2ðnÞ �
N1ðnÞ represents the normalized difference of the hydro-
dynamic resistance between both arms at time n. Our
procedure consists of three steps: (1) before the injection
of each droplet at the node, we first compute the number of
droplets present in each arms and the resulting value of�n,

(2) we determine the path taken by the incoming droplet,
(3) we move all the droplets by intervals of �=2 along each
arms, with one or more droplets possibly exiting the loop.
All droplets flowing through arm (i) share the same

retention time T?
i ¼ 2Li

� , yielding the discrete time

Ti ¼ ceilð2Li

� Þ used in our iterative analysis. The values of

�n andNi are determined in steps (1) and (2), respectively.
N1ðnÞ and N2ðnÞ are given by:

NiðnÞ ¼
Xn

k¼n�Tiþ1

Hð�i�kÞ;

where �1 ¼ 1 and �2 ¼ �1:

The binary signalHð�nÞ is then processed into a series of
‘‘packs,’’ Spack, a pack being the number of droplets flowing

through the shorter arm between two successive droplets
taking the longer arm (including Spack ¼ 0, if two subse-

quent droplets flow through the longer arm) [Fig. 1(b)]. As
expected, Fig. 1(b) shows the emergence of periodicity.
Although the composition of the packs during one cycle
shows a strong dependence on initial conditions [Fig. 1(c)],
the number of dropletsNcyc, i.e., the cycle timeTcyc ¼ Ncyc,

and packs per cycle, Npack, are two invariants. We next

derive mathematical expressions for these invariants.
Because of the discrete nature of the system and feed-

backs, the difference N1 � N2 is either floorðL2�L1

Ld
Þ or

ceilðL2�L1

Ld
Þ, so that the difference of the hydrodynamic

resistances remains the closest to 0 in Ld units. When the
total number of droplets N1 þ N2 is constant, it can be
shown that N1 and N2 are both constant and that the cycle
time is T2 � T1; the conservation of the dispersed phase is
then verified at each time �. However, N1 þ N2 is usually
not constant but takes only two consecutive values: either
N1 is constant and N2 fluctuates by 1 (Tcyc ¼ T1) or N2 is

constant and N1 fluctuates by 1 (Tcyc ¼ T2).

Bifurcations from one periodical regime to another are
controlled by � (see the raw numerical data in Ref. [13]).
The first bifurcation occurs at the filter-repartition transi-
tion, when the hydrodynamic resistance of the short arm
full of droplets becomes larger than that of the empty long

one, i.e. L2�L1

Ld
< floorð2L1

� Þ; hence, �f ¼ 2L1

floorðL2�L1
Ld

Þþ1
.

Decreasing � further allows a remaining number of drop-

lets M ¼ ceilð2L1

� Þ � floorðL2�L1

Ld
Þ to be shared between the

two outlets to nearly equalize their hydrodynamic resistan-
ces. Denoting NH

1 the number of holes in the short arm, we
directly show thatN2 þ NH

1 can take only two values,M or
M� 1. When Tcyc ¼ T1, N

H
1 is constant and N2 ¼ M�

NH
1 � 1 during a time t < T1 and M� NH

1 during T1 � t.
Because of the conservation of the total number of droplets
in the two arms, ðT1 � tÞðM� NH

1 Þ þ tðM� NH
1 � 1Þ ¼

T2N
H
1 . Using a similar analysis when Tcyc is equal to T2 and

T2 � T1, we obtain that the following condition must be
fulfilled for i ¼ 1 or 2:

FIG. 1. (a) Schematic of the flow model defining �, L1, L2 >
L1, and �. (b) Top panel: Typical evolution of the numerical
binary signal Hð�nÞ with the droplet number n. Each 1 and 0,
respectively, stand for one droplet flowing in arm (1) and one
hole present in arm (1) [i.e., one droplet flowing in arm (2)].
Bottom panel: Hð�nÞ is processed into a sequence of packs of
droplets, Spack. (c) For given values of Ld ¼ 2:7, � ¼ 8:2, L1 ¼
100, and L2 ¼ 150, Spack strongly depends on initial conditions:

the arm (2) is initially empty and the arm (1) is filled with
droplets located at positions xk, where k � 1 is an integer:
(i) xk ¼ kL1=20, (ii) xk ¼ kL1=10, and (iii) xk ¼ kL1=5.
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0 � Ti

T1 þ T2

M� NðHÞ
i � Ti

T1 þ T2

: (1)

Using Eq. (1), the two invariants, Tcyc and Npack, can be

predicted for a given value of �. We calculate the fractional

parts �p of pM and �q of qM, with p ¼ T1

T1þT2
and q ¼

T2

T1þT2
¼ 1� p. Noting that �p þ �q must be equal to 0 or

1, we determine four possible cases: (i) �p ¼ �q ¼ 0,

(ii) �p ¼ p and �q ¼ q, (iii) 0< �p < p and q < �q < 1,

(iv) p < �p < 1 and 0< �q < q.

In case (i), pM and qM are integers, NH
1 and N2 are then

simultaneously constant and respectively given by those
integers; Tcyc ¼ T2 � T1 and Npack ¼ N2 � NH

1 ¼
ðq� pÞM. In case (ii), pðM� 1Þ and qðM� 1Þ are inte-
gers and, respectively, set the values of NH

1 and N2 which
are both constant: Tcyc ¼ T2 � T1 and Npack ¼ ðq� pÞ�
ðM� 1Þ. In cases (iii) and (iv), the condition given in
Eq. (1) is no longer fulfilled for both i ¼ 1 and 2: NH

1

andN2 cannot be simultaneously constant. In case (iii),NH
1

is constant and equal to the integer part of pM, Tcyc ¼ T1

and Npack ¼ NH
1 . In case (iv), N2 is constant and equal to

the integer part of qM, Tcyc ¼ T2 and Npack ¼ N2. As

expected, these selection rules mirror our numerical simu-
lations that assume a constant droplet velocity in both arms
[13]. Successive bifurcations are related to a variation of 1
in either T1 or T2, and are expected to occur when the

residence times T?
i ¼ 2Li

� take integer values. This happens

for specific values of � ¼ �cði; kÞ:
2Li

�cði; kÞ ¼ floor

�
L2 � L1

Ld

�
þ k; (2)

where k 2 N? and i ¼ 1, 2.
We next compare our predictions with the full-model

numerical simulations, i.e., performed with nonlinear cou-
plings between vi and Ni [7,9,10]. As shown in Fig. 2,
although our approximation that neglects velocity fluctua-
tions in the loop may seem severe, our simplified model
quantitatively captures most features of the numerical data.
As predicted, we obtain numerous periodic regimes whose
periods, Tcyc, are discrete and correspond to either T1, T2,

or T2 � T1. Each of these regimes, or ‘‘plateaus, ’’ exists
over a large range of the parameter �. Our simple model
describes well the occurrence of the bifurcations between
two consecutive plateaus and the period selection for a
given one. In addition, the explicit equation, Eq. (2), pre-
dicts well the positions of these bifurcations. We observe,
however, small shifts of the position of the bifurcations that
do not alter the global picture, and periodic regimes with
unusually long cycle times emerging between two succes-
sive plateaus. Since these singular regimes that are not
predicted by our model exist only for a very narrow range
of the parameter �, narrower than the experimental sto-
chastic noise of � as discussed below, they are not observ-
able experimentally which makes them irrelevant to our

experiments. As shown in [13] where we provide a more
quantitative comparison of both the models, similar behav-
iors are obtained for the evolution of Npack with �=�f.

To further validate our model, we carry out the following
experiments. We use a microfluidic device [Fig. 3(a)] hav-
ing an asymmetric loop with two arms of different lengths
L1 < L2 but same cross-section, and we study the traffic of
trains of monodisperse droplets (for details about the ex-
perimental system, see Ref. [10]). We control the droplet
size r by adjusting the water and oil flow rates, and the
distance � by using the dilution module [Fig. 3(a)]; � is

FIG. 2 (color online). Numerical simulations performed with
velocity fluctuations: Bifurcation diagrams of Tcyc=T

?
1 with

�=�f. The vertical lines are predictions calculated using Eq.

(2) and the red line corresponds to the selection rules derived in
the text. Ld ¼ 2:7, L1 ¼ 100, and L2 ¼ 150.

FIG. 3. (a) Experimental setup: shown are the water-in-oil
droplet production stage, the dilution module, and the asymmet-
ric loop. (b) Typical variation of Spack. The dynamical response is

complex, yet Tcyc and Npack are conserved during this long time

series.
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maintained large enough so that droplets do not interact.We
use a high-speed camera (frame rate �1000 frames=s) to
monitor droplet traffic, and we analyze the movies with
custom-written MATLAB software to determine the series of
binary choices between the short and long arm, coded
respectively by 1 and 0 similarly to the simulations. An
important feature of our experiments is that L1 and L2 are
chosen large enough so that experiments are performed
within the limit that we explored numerically, i.e. Ld �
Li þ NiLd [10].

When � < �f, the signal of the packs exhibits complex

dynamics, as shown by a succession of different periodical
behaviors lasting hundreds of droplets [Fig. 3(b)].
Although the underlying patterns of droplet partitioning
change, Fig. 3(b) shows that those successive periodic
regimes share the same periodicity Tcyc and the number

of packs Npack. We next study the variations of these

invariants with �. In agreement with our analytical pre-
dictions, when � decreases, Tcyc and Npack both increase,

leading to increasing complexity of the droplet repartition
pattern for a given periodic regime (not shown here). We
present in Fig. 4 the evolution of Tcyc=T

?
1 with �=�f. We

obtain numerous discrete bifurcations between three dis-
tinct branches which, as expected by our model, corre-
spond to Tcyc ¼ Ti and to Tcyc ¼ T2 � T1 [Fig. 4(a)]. By

adjusting the value of Ld, our set of experiments concurs
with predictions, as shown in [Fig. 4(b)].

Figure 1(c) shows that the pack composition presents a
strong dependence on initial conditions. Such coexistence

of several attractors for a set of parameters, called multi-
stability, is a common feature for many delay systems, e.g.,
models of neurons [14]. The dynamics can then commute
from one regime to another when some noise leads the
system to quit the basin of attraction of one attractor to
reach another [11]. The presence of noise can be imple-
mented in our numerical simulations by including fluctua-
tions of � or Ld, which are indeed inherent to experiments
(� 2%, [15]), to reproduce a complex dynamical response
as that of Fig. 3(b) (not shown here).
In closing, we observe multistability between different

periodic states in an asymmetric microfluidic device. The
simplicity of our model system makes it a promising ex-
perimental and theoretical tool to understand dynamics in
delayed feedback systems. Our results provide a robust way
to understand and control droplet traffic complex dynamics
by applying the selection rules we identified. Our system,
discretized both in space and time and controlled by simple
iterative rules, also illustrates digital microfluidics as a
simple example of cellular automaton [6].
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