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We present unambiguous evidence, from lattice simulations of QCD with three degenerate quark

species, for two tricritical points in the ðT;mÞ phase diagram at fixed imaginary chemical potential�=T ¼
i�=3mod2�=3, one in the light and one in the heavy mass regime. These represent the boundaries of the

chiral and deconfinement critical lines continued to imaginary �, respectively. It is demonstrated that the

shape of the deconfinement critical line for real chemical potentials is dictated by tricritical scaling and

implies the weakening of the deconfinement transition with real chemical potential. The generalization to

nondegenerate and light quark masses is discussed.
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The QCD phase diagram is at present largely unknown.
It describes which different forms of nuclear matter exist
for different choices of temperature and baryon density and
whether they are separated by phase transitions. Its knowl-
edge is thus of great importance for current and future
experimental programs in nuclear and heavy ion physics
as well as astroparticle physics. Since QCD is strongly
coupled on scales of a baryon mass and below, fully non-
perturbative calculations are warranted. Unfortunately,
Monte Carlo simulations of lattice QCD at nonvanishing
baryon density are prohibited by the ‘‘sign’’ problem. To
date, only indirect methods are available, introducing addi-
tional approximations which are justified for �=T & 1
only [1]. One of these consists of simulating QCD at
imaginary chemical potential � ¼ i�i with �i 2 R, for
which there is no sign problem, and analytically continuing
the results to real � [2,3]. While Monte Carlo results
contain all information about imaginary �, analytic con-
tinuation via truncated polynomials fitted to the data
introduces the approximation.

In this Letter, we propose instead to study the phase
diagram of QCD at imaginary chemical potential in its
own right. We shall demonstrate that there are intricate
first-order, triple, critical, and tricritical structures, whose
details depend on the number of dynamical quark flavors
Nf and their respective masses mf. These structures are

bona fide properties of QCD and for this reason alone merit
a detailed investigation. Moreover, we show that tricritical
lines found at imaginary chemical potential, with their
associated scaling behavior, represent important constraints
for the critical surfaces at real chemical potential. Finally,
the phase diagram we investigate may serve as a benchmark
for studies within effective models (such as Polyakov-
Nambu-Jona-Lasinio, sigma models, quark hadron models,
etc.), which can be easily extended to imaginary �.

Here we present a study of the ðT;mÞ phase structure of
QCD at fixed imaginary chemical potentials, �c

i ¼ ð2nþ

1Þ�T=3, n ¼ 0;�1;�2; . . . , for Nf ¼ 3 degenerate quark

flavors. At those values of �i, QCD undergoes a transition
between adjacent Zð3Þ sectors. This is due to the exact
symmetries of the partition function

Zð�Þ ¼ Zð��Þ; Z

�
�

T

�
¼ Z

�
�

T
þ i

2�n

3

�
(1)

for complex � [4], which imply Zð�c
i þ�iÞ ¼ Zð�c

i �
�iÞ. The Zð3Þ sectors are distinguished by the Polyakov
loop

LðxÞ ¼ 1

3
Tr

YN�

�¼1

U0ðx; �Þ ¼ jLje�i’; (2)

whose phase ’ cycles through h’i ¼ nð2�=3Þ, n ¼
0; 1; 2; . . . , as the different sectors are traversed.
Hence, for complex � there is a global Zð3Þ symmetry,

even in the presence of finite mass quarks. Transitions in
�i between neighboring sectors are of first order for high T
and analytic crossovers for low T [2–4], as shown in Fig. 1
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FIG. 1. Left: Phase diagram for imaginary �. Vertical lines are
first-order transitions between Zð3Þ sectors; arrows show the
phase of the Polyakov loop. The � ¼ 0 chiral or deconfinement
transition continues to imaginary �; its order depends on Nf and

the quark masses. Right: Phase diagram for Nf ¼ 3 at � ¼ i�T.

Solid lines are lines of triple points ending in tricritical points,
connected by a line of Zð2Þ critical points.
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(left). Correspondingly, for fixed �i ¼ �c
i , there are tran-

sitions in T between an ordered phase with two-state
coexistence at large T and a disordered phase at low T.
An order parameter to distinguish these phases is the
shifted phase of the Polyakov loop, � ¼ ’��i=T [5].
At high temperature it fluctuates about h�i ¼ ��=3 on the
respective sides of�c

i . The thermodynamic limit picks one
of those states, thus spontaneously breaking the reflection
symmetry about �c

i . At low temperatures � fluctuates
smoothly between those values, with the symmetric ground
state h�i ¼ 0.

Away from �i ¼ �c
i , there is a chiral or deconfinement

transition line separating high and low temperature re-
gions. This line represents the analytic continuation of the
chiral or deconfinement transition at real �. Its nature
depends on the number of quark flavors and masses.
Early evidence [2,3] is consistent with this line meeting
the Zð3Þ transition at its end point between first order and
crossover, and our present analysis unambiguously con-
firms this. The nature of the end point of the Zð3Þ transition
line has already been investigated for Nf ¼ 4 [6] and more

recently for Nf ¼ 2 [7].

In this Letter, we study the nature of this junction at fixed
� ¼ i�T in Nf ¼ 3 QCD as a function of quark mass.

There are two possibilities, which we shall find to be both
realized. For small masses the chiral transition is first-order
and branches off the Zð3Þ transition line, rendering the
meeting point of the three first-order lines a triple point.
For intermediate masses, the Zð3Þ transition ends in a
second-order end point with 3D Ising universality; i.e.,
the chiral or deconfinement transition in its vicinity is a
crossover. For large masses there is a first-order deconfine-
ment transition meeting the Zð3Þ transition again in a triple
point. Hence, for fixed � ¼ i�T, we obtain a ðT;mÞ phase
diagram as in Fig. 1 (right). The end points of the solid
lines, which separate triple points from Ising points, cor-
respond to tricritical points. The change from first-order to
Ising behavior for light and intermediate quark masses has
already been observed for Nf ¼ 2 [7].

To establish the phase diagram Fig. 1 (right) numeri-
cally, wework on lattices with temporal extentNt ¼ 4with
standard staggered fermions at fixed �=T ¼ i�, using the
rational hybrid Monte Carlo algorithm and setting aside
possible issues with taking a fractional power of the fer-
mion determinant. For fixed Nt, T is tuned by varying the
lattice gauge coupling �. For a given bare quark mass am,
we investigate the nature of the transition as a function of�
by analyzing the finite-size scaling of the Binder cumulant

B4ðXÞ � hðX� hXiÞ4i=hðX� hXiÞ2i2; (3)

with X ¼ ImðLÞ and hXi ¼ 0. For �=T ¼ i�, every �
value represents a point on the phase boundary and thus
is pseudocritical. In the thermodynamic limit, B4ð�Þ ¼ 3,
1.5, 1.604, and 2 for the crossover, first-order triple point,
3D Ising, and tricritical transitions, respectively. On finite
L3 volumes the steps between these values are smeared out

to continuous functions whose gradients increase with
volume. The critical coupling �c for the end point is
obtained as the intersection of curves from different vol-
umes. In the scaling region around �c, B4 is a function of

x ¼ ð�� �cÞL1=� alone and can be expanded:

B4ð�;LÞ ¼ B4ð�c;1Þ þ a1xþ a2x
2 þ � � � ; (4)

up to corrections to scaling, with the critical exponent �
characterizing the approach to the thermodynamic limit.
The relevant values for us are � ¼ 1=3, 0.63, and 1=2 for a
first-order, 3D Ising, or tricritical transition, respectively.
For each quark mass, we simulated lattices of sizes L ¼

8, 12, and 16 (20 in a few cases), at typically 8–14 different
� values, calculated B4ðImðLÞÞ and filled in additional
points by Ferrenberg-Swendsen reweighting [8]. Figure 2
shows examples for quark masses am ¼ 0:04; 0:3. B4

moves from large values (crossover) at small � (i.e., low
T) towards 1 (first-order transition) at large � (i.e., high T).
In the neighborhood of the intersection point, we then fit
all curves simultaneously to Eq. (4), thus extracting �c,
B4ð�c;1Þ, �, a1, and a2. We observe that the value of the
Binder cumulant at the intersection can be far from the
expected universal values in the thermodynamic limit. This
is a common situation: Large finite-size corrections are
observed in simpler spin models even when the transition
is strongly first-order [9]. Moreover, in our case, logarith-
mic scaling corrections will occur near a tricritical point
since d ¼ 3 is the upper critical dimension in this case
[10]. Fortunately, the critical exponent �, which deter-
mines the approach to the thermodynamic limit, is less
sensitive to finite-size corrections and in Fig. 2 consistent
with � ¼ 0:33 and 0.63, its values for first- and second-
order transitions, respectively. A check is to fix � to one of
the universal values and see whether the curves collapse
under the appropriate rescaling, as in Fig. 2, insets. Note
that the critical coupling determined from the intersection
of the B4 curves in Fig. 2 is consistent with the one
extracted from the peak of the specific heat or the chiral
susceptibility.
Proceeding in this way, we have investigated quark

masses distributed over a large range, with results
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FIG. 2 (color online). Finite-size scaling of B4 for small and
intermediate quark masses, fitted to Eq. (4). Insets show data
rescaled with the exponent fixed to � ¼ 0:33 and 0.63, corre-
sponding to a first- or second-order transition, respectively.
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summarized in Fig. 3 (left). We find unambiguous evidence
for a change from first-order scaling to 3D Ising scaling
and back to first-order scaling as the quark mass is made
larger. Note that, in the infinite volume limit, the curve
would be replaced by a nonanalytic step function, whereas
the smoothed-out rise and fall in Fig. 3 (left) corresponds to
finite volume corrections.

The results from the finite-size scaling of B4 can be
further sharpened by looking at the probability distribution
of ImðLÞ at the critical couplings �c, corresponding to the
crossing points. This is shown in Fig. 3 (right) for masses
am ¼ 0:05; 0:1; 0:2; 0:3 for L ¼ 16. The lightest mass dis-
plays a clear three-peak structure, indicating coexistence of
three states at the coupling �c, which therefore corre-
sponds to a triple point. The same observation holds for
heavy masses. For am ¼ 0:1; 0:2 the central peak is dis-
appearing, and for am ¼ 0:3we are left with the two peaks
characteristic for the magnetic direction of 3D Ising uni-
versality. We have checked the expected volume scaling of
all distributions.

Hence, for small and large masses, we have unambig-
uous evidence that the boundary point between a first-order
Zð3Þ transition and a crossover at � ¼ i�T corresponds to
a triple point. This implies that two additional first-order
lines branch off the Zð3Þ transition line as in Fig. 1 (left),
which are to be identified as the chiral (for light quarks)
or deconfinement (for heavy quarks) transition at imagi-
nary chemical potential. This is expected on theoretical
grounds: Form ¼ 0 orþ1, these transitions are first-order
for any chemical potential. The fact that the end point of
the Zð3Þ transition line changes its nature from a triple
point at low and high masses to second-order for inter-
mediate masses implies the existence of two tricritical
points. Our current data on Nt ¼ 4 put these between
0:07< amtric1 < 0:3 and 0:5< amtric2 < 1:5.

Since our Nt ¼ 4 lattice is very coarse, a� 0:3 fm, an
important question concerns cutoff effects. These strongly
affect quark masses and, in particular, the tricritical quark
masses where the changes from a triple point to a critical
Ising point happen. However, universality implies that
critical behavior is insensitive to the cutoff, as long as the
global symmetries of the theory are not changed. Our

calculation is therefore sufficient to establish the qualita-
tive picture Fig. 1 (right) as the continuum phase diagram
at � ¼ ið2nþ 1Þ�T=3 for Nf ¼ 3.

Let us now discuss how this critical structure is embed-
ded in the parameter space with nondegenerate quark
masses [Fig. 4 (right)]. The case Nf ¼ 3 corresponds to

the diagonal, with two tricritical points separating triple
points from second-order points. For nondegenerate quark
masses, the qualitative possibilities for the junctions in
Fig. 1 (left) remain the same. The tricritical points will
thus trace out lines,mtric

s ðmu;dÞ. In the case of heavy quarks,
the situation is qualitatively the same for any Nf ¼ 1; 2; 3

[11,12]. In the light quark regime, there is an interplay
between the Zð3Þ and chiral symmetries, and the situation
may be more complicated. The findings reported in Ref. [7]
imply the existence of a finite tricritical light quark mass
also for Nf ¼ 2. It would then seem natural that the

tricritical points for Nf ¼ 2; 3 are continuously connected

by varying the strange quark mass, though this needs to be
confirmed by explicit calculations. We stress that all criti-
cal structure indicated in Fig. 4 (right) can be determined
reliably with Monte Carlo techniques and continuum ex-
trapolations are feasible with current resources. Knowl-
edge of the continuum phase diagram should provide
valuable benchmarks for the description of QCD phases
by effective models.
In order to establish the connection between imaginary

and real chemical potential, let us briefly recall the situ-
ation at� ¼ 0 [Fig. 4 (left)]. The deconfinement transition
in pure gauge theory is first-order. In the presence of dy-
namical quarks, it weakens with decreasing quark mass
until it disappears along the deconfinement critical line
with 3D Ising universality. The critical point for Nf ¼ 1

was determined in Ref. [12] and, more recently, for Nf ¼
1; 2; 3 in Ref. [11]. Similarly, the chiral transition for Nf ¼
2þ 1 is first-order and weakens with increasing quark
mass, until it disappears at a chiral critical line with 3D
Ising universality [13,14]. When a chemical potential is
switched on, these critical lines sweep out critical surfaces,
which continue in the imaginary � (or��2) direction and
join the tricritical lines [Fig. 4 (right)] at � ¼ i�T=3. We

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.01  0.1  1

ν

quark mass

Second order

Tricritical

First order

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

Im(L)

m=0.050
m=0.100
m=0.200
m=0.300

FIG. 3 (color online). Left: Critical exponent � at �=T ¼ i�.
Right: Distribution of ImðLÞ at the end point of the Zð3Þ
transition.

phys.
point

0
0

N  = 2

N  = 3

N  = 1

f

f

f

ms

s
m

Gauge

 m   , mu

1st

2nd order
O(4) ?

chiral
2nd order
Z(2)

deconfined
2nd order
Z(2)

crossover

1st

 d 

tric

∞

∞
Pure

tricritical
1st
 order
triple

    2nd order

 3d Ising

mu,d

ms

?

1st order
triple

FIG. 4 (color online). Order of the transition as a function of
quark masses. Left: The quark hadron transition at� ¼ 0. Right:
The Zð3Þ transition end point at �=T ¼ i�=3.

PRL 105, 152001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 OCTOBER 2010

152001-3



shall now illustrate this for the deconfinement critical
surface.

By universality, the properties of a second-order transi-
tion are the same in a model sharing the same global
symmetry, and for the deconfinement transition this is the
3D three-state Potts model with Hamiltonian

H ¼ �k
X
i;x

��ðxÞ;�ðxþîÞ �
X
x

½h�ðxÞ þ h0��ðxÞ�; (5)

where �ðxÞ is a Zð3Þ spin and the couplings are identified
as h ¼ exp�ðM��Þ=T and h0 ¼ exp�ðMþ�Þ=T,
while M is the heavy quark mass and k increases with
temperature T. The qualitative change of the critical de-
confinement line with chemical potential can be calculated
in this model, and one finds the first-order region to shrink
with real � [15]. The same observation is made for full
QCD on a coarse lattice with a strong coupling expansion
[11]. See Fig. 5.

Both calculations show the continuation of the critical
mass to negative �2 and a nonanalyticity when joining the
Zð3Þ transition at� ¼ i�T=3. However, in both cases it has
not been fully realized that this junction is tricritical. Since
chemical potential enters the partition function of the Potts
model in the same way as in QCD, it features the same Zð3Þ
transitions. We can therefore directly check our QCD re-
sults in the heavy mass region against those in the Potts
model at the same value � ¼ i�T=3. For the latter, the
Binder cumulant of the spin magnetization was measured
[15]. We reanalyzed those data, fitting them to the scaling
form [Eq. (4)], and indeed find a change from first-order
behavior (� ¼ 0:33) at large values ofM=T to second-order
3D Ising (� ¼ 0:63), implying again a tricritical point.

Generally, a tricritical point represents the confluence of
two ordinary critical points. In the heavy mass region, the
critical end points of the deconfinement transition at
� ¼ i�T=3ð1� "Þ merge with the end point of the Zð3Þ
transition. The deviation from the symmetry plane
[ð�=TÞ2 þ ð�=3Þ2] corresponds to an external field in a
spin model, and the way a critical line leaves a tricritical
point in such a field is again universal [10]:

mc

T
ð�2Þ ¼ mtric

T
þ K

��
�

3

�
2 þ

�
�

T

�
2
�
2=5

: (6)

Figure 5 shows that the data from Refs. [11,15] excellently
fit this form, far into the real chemical potential region.

Thus, for heavy quark masses, the form of the critical
surface of the deconfinement transition is determined
by tricritical scaling of the Zð3Þ transition at imaginary
� ¼ i�T=3.
It is clear that the chiral critical surface will likewise

terminate on the chiral tricritical line at � ¼ i�T=3.
Unfortunately, for this surface no suitable effective model
is available, and we presently do not know to what extent it
is shaped by tricritical scaling. By estimating amtric1 � 0:1
and using amcð0Þ � 0:0265 [16], K is fixed and expansion
of Eq. (6) predicts a negative curvature c1 � �10 for the
chiral critical surface, as compared to the directly cal-
culated c1 ¼ �3:3ð3Þ (in the notation of Ref. [16]).
Tricritical scaling thus predicts a weakening also of the
chiral phase transition with real chemical potential, in-
dependently confirming the findings in Refs. [2,14,16].
Whether the stronger effect is due to an inaccurate estimate
of mtric1, finite-size or renormalization effects in both
masses, or a deviation from tricritical scaling at � ¼ 0
due to the interplay with chiral symmetry could be an-
swered by extensive simulations.
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