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We present a compact analytic formula for the two-loop six-particle maximally helicity violating

remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) inN ¼ 4 supersymmetric

Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross ratios of momentum

twistor invariants as their arguments. In deriving our formula we rely on results from the theory of

motives.
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Introduction.—The past few years have witnessed revo-
lutionary advances in our understanding of the structure of
scattering amplitudes, especially inN ¼ 4 supersymmet-
ric Yang-Mills theory (SYM). It is easy to argue that the
seeds of modern progress were sown already in the 1980s
with the discovery of the Parke-Taylor formula for the
simplest nontrivial amplitudes: tree-level maximally helic-
ity violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate using
traditional Feynman diagram methods signalled the tanta-
lizing possibility that a great vista of unanticipated struc-
ture in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to say
that recent progress at loop level has mostly been evolu-
tionary rather than revolutionary, driven primarily by faster
computers, improved algorithms (both analytic and nu-
meric), and software for multiloop calculations which
has been made publicly available. Yet we hope that a great
new vista of unexplored structure awaits us also at loop
level in SYM theory.

This Letter is concerned with the planar two-loop six-
particle MHV amplitude [1,2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3,4],
determines the n-particle MHV amplitude at each loop
order L � 2 up to an additive finite function of kinematic

invariants called the remainder function RðLÞ
n . Given the

presumption of dual conformal invariance [5,6] for SYM
amplitudes (not yet proven, but supported by all available

evidence [1,3,4,7,8]), RðLÞ
n can depend on conformal cross

ratios only. Since there are no cross-ratios for n ¼ 4, 5, the

first nontrivial remainder function is Rð2Þ
6 .

The same function Rð2Þ
6 is also believed [9–12] to arise as

the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13,14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was

established in [1,14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate
Wilson loop diagrams to obtain an analytic expression for

Rð2Þ
6 as a 17-page linear combination of generalized poly-

logarithm functions [16,17] (see also [18]).
The motivation for the present work is the belief that if

SYM theory is really as beautiful and rich as recent devel-
opments indicate, then there must exist a more enlighten-

ing way of expressing the remainder function Rð2Þ
6 . Ideally,

like the Parke-Taylor formula at tree level, the expression
should provide encouragement and guidance as we seek
deeper understanding of SYM at loop level.

We present our new formula for Rð2Þ
6 in the next section

and then describe the algorithm by which it was obtained.

The remainder function Rð2Þ
6 .—The remainder function

Rð2Þ
6 is usually presented as a function of the three dual

conformal cross ratios

u1 ¼ s12s45
s123s345

; u2 ¼ s23s56
s234s123

; u3 ¼ s34s61
s345s234

; (1)

of the momentum invariants si���j ¼ ðki þ � � � þ kjÞ2,
though we will see shortly that cross ratios of momentum
twistor invariants are more natural variables. In terms of

x�i ¼ uix
�; x� ¼ u1 þ u2 þ u3 � 1� ffiffiffiffi

�
p

2u1u2u3
; (2)

where � ¼ ðu1 þ u2 þ u3 � 1Þ2 � 4u1u2u3, we find

Rð2Þ
6 ðu1; u2; u3Þ ¼

X3
i¼1

�
L4ðxþi ; x�i Þ �

1

2
Li4ð1� 1=uiÞ

�

� 1

8

�X3
i¼1

Li2ð1� 1=uiÞ
�
2

þ 1

24
J4 þ �2

12
J2 þ �4

72
: (3)

Here we use the functions
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L4ðxþ; x�Þ ¼ 1

8!!
logðxþx�Þ4 þ X3

m¼0

ð�1Þm
ð2mÞ!!

� logðxþx�Þmð‘4�mðxþÞ þ ‘4�mðx�ÞÞ (4)

and

‘nðxÞ ¼ 1
2ðLinðxÞ � ð�1ÞnLinð1=xÞÞ; (5)

as well as the quantity

J ¼ X3
i¼1

ð‘1ðxþi Þ � ‘1ðx�i ÞÞ: (6)

Note that in the Euclidean region where all ui > 0, the xþi
never enter the lower half-plane and the x�i never enter the
upper half-plane. The expression (3), is valid in the
Euclidean region with the understanding that the branch
cuts of Linðxþi Þ and Linð1=x�i Þ are taken to lie below the
real axis while the branch cuts of Linðx�i Þ and Linð1=xþi Þ
are taken to lie above the real axis. (The quantities xþi x�i
appearing as arguments of the logs are always positive.) In
writing (3) extreme care has necessarily been taken to
ensure the proper analytic structure. For example one can
easily check that J naively simplifies to 1

2 logðx�=xþÞ, but
this relation only holds in the regions �> 0 or u1 þ u2 þ
u3 < 1. We caution the reader that any attempt to use any
such naive relations, including the well-known relation
between Linð1=xÞ and LinðxÞ, without careful consideration
of the branch structure, voids our warranty on (3).

Besides its great simplicity, two notable features of (3)
which set it apart from the DDS formula are manifest
symmetry under any permutation of the ui, and the fact
that the expression is valid and readily evaluated for all
positive ui, in particular, also outside the unit cube.

Description of the algorithm.—
A convenient choice of variables.—The DDS formula is

expressed in terms of the classical polylogarithms Lik as
well as a collection of considerably more complicated
multiparameter generalizations studied by one of the au-
thors [19] and defined recursively by

Gðak; ak�1; . . . ; zÞ ¼
Z z

0
Gðak�1; . . . ; tÞ dt

t� ak
(7)

with GðzÞ � 1, of which the harmonic polylogarithms
familiar in the physics literature [20] are special cases.

The parameters of the various transcendental functions
which appear in the DDS formula involve not just the cross
ratios (1), but also the more complicated combinations 1�
ui, ð1� uiÞ=ð1� ui � ujÞ, ui þ uj, u

�
jkl ¼ 1�uj�ukþul�

ffiffiffi
�

p
2ð1�ujÞul ;

and v�
jkl ¼ uk�ul�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðukþulÞ2�4ujukul

p
2ð1�ujÞuk . This large collection of

variables is redundant in an inefficient way, with many
rather complicated algebraic identities amongst them.

Our computation is greatly facilitated by a judicious
choice of variables which trivializes all of these algebraic

relations. We choose to express the three ui by six variables
zi valued in P1 [with an SLð2;CÞ redundancy] via

u1 ¼ z23z56
z25z36

; u2 ¼ z16z34
z14z36

; u3 ¼ z12z45
z14z25

; (8)

where zij ¼ zi � zj. One virtue of these coordinates is that

� becomes a perfect square, so that the u�jkl are rational

functions of the zij. (The v�
jkl completely drop out as

explained in the following subsection.)
We anticipate that for general n the best variables for

studying the remainder function will be the momentum
twistors of [21]. Indeed the z variables may be thought of
as a particular simplification of momentum twistors which
is valid for the special case n ¼ 6 via the relation
habcdi / zabzaczadzbczbdzcd. In terms of momentum
twistors

u1 ¼ h1234ih4561i
h1245ih3461i ; xþ1 ¼�h1456ih2356i

h1256ih3456i ; etc: (9)

The symbol of a transcendental function.—We define a
function Tk of transcendentality degree k as one which can
be written as a linear combination (with rational coeffi-
cients) of k-fold iterated integrals of the form

Tk ¼
Z b

a
d logR1 � � � � � d logRk; (10)

where a and b are rational numbers, RiðtÞ are rational
functions with rational coefficients and the iterated inte-
grals are defined recursively by
Z b

a
dlogR1�����dlogRn

¼
Z b

a

�Z t

a
d logR1�����dlogRn�1

�
dlogRnðtÞ:

(11)

The integrals are taken along paths from a to b. When the
Ri are rational functions in several variables the issue
of local path independence (or homotopy invariance) is

important (see [22]), and we have checked that Rð2Þ
6 has this

property.
A useful quantity associated with Tk is its symbol, an

element of the k-fold tensor product of the multiplicative
group of rational functions modulo constants (see [3,22]]
The symbol of the function shown in (10) is

symbol ðTkÞ ¼ R1 � � � � � Rk; (12)

and this definition is extended to all functions of degree k
by linearity.
The group property for rational functions Ri modulo

constants implies that

R1 � � � � ðRaRbÞ � � � �Rk ¼ R1 � � � � Ra � � � �Rk

þ R1 � � � � Rb � � � �Rk; (13)

R1 � � � � ðcRaÞ � � � �Rk ¼ R1 � � � � Ra � � � �Rk; (14)

for any constant c and rational functions Ri.
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The symbol of all functions appearing in the DDS ex-

pression for the remainder function Rð2Þ
6 are readily com-

puted using the above definitions. For example the classical
polylogarithm functions

Li kðzÞ¼
Z z

0
Lik�1ðtÞd logt; Li1ðzÞ¼�logð1�zÞ (15)

clearly have

symbol ðLikðzÞÞ ¼ �ð1� zÞ � z � � � � � z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k�1 times

: (16)

Finally, we note that knowledge of the symbol does not
uniquely determine a transcendental function; there is an
ambiguity consisting in adding lower degree functions
multiplied by numerical constants of the appropriate
degree.

Constructing a prototype.—Our first goal is to construct
a simple function which has the same symbol S as that of
the DDS formula. Interestingly, we find that the v�

jkl var-

iables completely drop out of the symbol, even before
switching to the z variables. Although the full expression
is too lengthy to reproduce here (see [23]), we find that S
possesses a crucial and surprising symmetry property,
which in components (the subscripts here run over the 15
different zij’s) reads

½Sabcd�Sbacd�SabdcþSbadc	�ða$c;b$dÞ¼0: (17)

It is known (see [24]) that transcendental functions of
degree less than four can always be expressed in terms of
logarithms and the classical polylogarithm functions Lik
only. However, an arbitrary function of degree four (or
higher) does not have this property, so it is rather remark-

able that the remainder function Rð6Þ
2 can be so expressed.

The explanation for this miracle is Conjecture 1.19 of
[24], from which it follows that any symbol obeying (17)
can be obtained from a function involving only logarithms
and the classical polylogarithm functions Lik with k 
 4.
There is, however, no ab initio statement one can make
about the arguments of those polylogarithms; they could in
principle be arbitrary algebraic functions of the variables
appearing in the symbol.

The key to constructing the function from the knowledge
of its symbol lies in identifying the symmetry properties of
the five kinds of terms which can appear, shown in the
following table:

Function A � A S � A A � S S � S

Li4ðxÞ � � � � � � ✓ ✓

Li3ðxÞ logðyÞ � � � � � � ✓ ✓

Li2ðxÞLi2ðyÞ ✓ ✓ ✓ ✓

Li2ðxÞ logðyÞ logðzÞ � � � ✓ ✓ ✓

logðxÞ logðyÞ logðzÞ logðwÞ � � � � � � � � � ✓

Here A (S) stands for antisymmetric (symmetric), and a
checkmark under A � A indicates that the function’s

symbol contains a piece which is antisymmetric under
exchange of the first two arguments and antisymmetric
under exchange of the last two arguments, etc. The func-
tion logðxÞ logðyÞ logðzÞ logðwÞ has a fully symmetric sym-
bol and hence only contributes to S � S.
The above table suggests the procedure for constructing

a function with the desired symbol S. First we isolate the
A � A part of S and write down a linear combination of
terms of the form Li2ðxÞLi2ðyÞ with that symbol, which is
only possible if (17) is satisfied. After subtracting the
symbol of this function from S we isolate the S � A part
which we fit with functions of the form Li2ðxÞ logðyÞ logðzÞ.
At the next step, A � S, we need both Li4ðxÞ and Li3ðxÞ�
logðyÞ, which can be isolated from each other because the
former does not contribute to the part of the symbol which
is antisymmetric under exchange of the middle two argu-
ments, as evident in (16). Ultimately we are left with terms
which are completely symmetric under exchange of all
arguments and can be fit via functions of the form logðxÞ�
logðyÞ logðzÞ logðwÞ.
This procedure leads to a function of degree 4 whose

symbol matches that of the DDS function using only
classical polylogarithm functions. One interesting feature
which emerges is that the arguments of all polylogarithms
in the result are either ‘‘diagonal’’ cross ratios such as (8),
which omit two diagonally opposite z’s, or ‘‘edge’’ cross
ratios, which omit two neighboring z’s, such as

x�1 ¼�z14z23
z12z34

; x�2 ¼�z16z25
z12z56

; x�3 ¼�z36z45
z34z56

; (18)

xþ1 ¼�z14z56
z16z45

; xþ2 ¼�z25z34
z23z45

; xþ3 ¼�z12z36
z16z23

: (19)

Fitting the remainder function Rð2Þ
6 .—The prototype for

Rð2Þ
6 is incomplete in two related aspects. First of all there is

considerable ambiguity in the placement of branch cuts,
which the symbol (since it involves only rational functions)
is completely insensitive to. For example, one may be
tempted to use the identity

Y3
i¼1

1� xþi
1� x�i

¼ ðxþ=x�Þ2 (20)

to replace J by 1
2 logðx�=xþÞ as mentioned above, but the

two quantities have different branch structures in u space.
All such ambiguities are resolved by the physical require-
ment that the remainder function should be real-valued and
smooth in the Euclidean region.
Second, it remains to determine the terms in (3) propor-

tional to �2 or �4, which do not contribute to the symbol.
These terms can be fixed by several considerations such as
checking the various Regge limits which were tabulated in

[17] (see also [25–29]), the requirement that Rð2Þ
6 must

vanish in the collinear limit Rð2Þ
6 ð1� u; u; 0Þ ¼ 0, or by

numerically fitting to the DDS formula. We have also
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checked agreement with the leading term in the expansion
around the collinear limit computed in [30].

Discussion.—We have presented in (3) a compact ana-
lytic expression for the two-loop six-particle MHV ampli-

tude or Wilson loop remainder function Rð2Þ
6 in terms of the

classical polylogarithm functions Lik only. The simplicity
of our result suggests that it is no longer outrageous to
imagine the possibility of determining the remainder func-
tion for all n and any number L of loops, with an aim of
matching onto the work of [30–34] at strong coupling.

For n > 6 we imagine that the remainder function will
continue to involve only the diagonal and edge momentum
twistor cross ratios, generalizing (8) and (18). It is also
notable that our formula involves a particular combination
(4) of polylogarithm functions with special analytic prop-
erties which is evidently very closely related to the Bloch-
Wigner-Ramakrishnan-Zagier (BWRZ) functions (see for
example [35]). These generalize very easily to any even
degree 2L, suggesting a natural appearance in the L-loop
remainder function. We anticipate that the consistency of
collinear limits, and especially the systematic expansion
away from them recently studied in [30], will tightly con-

strain the general form of RðLÞ
n .

Finally, we cannot pass up the opportunity to point out
that the Bloch-Wigner functions (the degree 2 case of the
BWRZ functions) are known [35] to compute the volumes
of hyperbolic tetrahedra, raising the fascinating possibility
of making a connection to recent work relating scattering
amplitudes to volumes of polytopes in AdS5 [36,37] (see
also [38,39]).

We have benefitted from stimulating discussions with N.
Arkani-Hamed, J. Maldacena, and E. Witten. C. V. is grate-
ful to Humboldt University for hospitality during the
course of this work, which was supported in part by the
DOE under contract DE-FG02-91ER40688 Tasks A (A.V)
and J OJI (M. S), and by the NSF under grants PECASE
PHY-0643150 and ADVANCE 0548311 (A.V).
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