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We propose a generating function for scattering amplitudes of N ¼ 6 supersymmetric-Chern-Simons

theory, which parallels a recent work on N ¼ 4 supersymmetric-Yang-Mills theory by Arkani-Hamed

et al. Our result suggests that the scattering amplitudes of the supersymmetric-Chern-Simons theory

exhibit Yangian invariance.
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Introduction.—The last decade has seen remarkable ad-
vances in novel methods for computing scattering ampli-
tudes in perturbative Yang-Mills theories; see, e.g., [1,2]
for recent reviews. While the new techniques are appli-
cable for many theories including QCD, the N ¼ 4
supersymmetric-Yang-Mills theory (SYM4) has proved to
be the richest testing ground for new theoretical ideas.

Recently, Arkani-Hamed et al. [3] proposed a remark-
ably simple reformulation of the scattering amplitudes
of planar SYM4. They presented a ‘‘generating function
for scattering amplitudes’’ named Ln;k in the form of a

matrix-valued contour integral. With a suitable choice of
the integration contour,Ln;k was conjectured to capture the

leading singularities associated to n-point, k negative he-
licity amplitudes. In particular, it has been proven thatLn;k

reproduces all tree-level amplitudes Atree
n;k [4]. The appli-

cability of the formulation of [3] to loop amplitudes is less
clear; see [5] for the most recent progress.

One of the most striking features of SYM4, which looks
mysterious from traditional points of view but becomes
transparent in the new formulation, is the so-called dual
superconformal symmetry [6–9]. The original and dual
superconformal symmetry of SYM4 together generate a
Yangian symmetry [10], which introduces elements of
integrability into the scattering amplitudes of SYM4 in
the planar sector [11].

It is clearly interesting to see if the new formulation of
[3] with a built-in Yangian symmetry can be applied to
other field theories. One strong candidate is the three-
dimensional N ¼ 6 super-Chern-Simons theory (SCS6)
constructed in [12–14]. This theory is special because of
two common features it shares with SYM4; it has a string
theory dual in the sense of [15] and its superconformal
algebra admits a simple extension to Yangian algebra as
explained in [10].

Preliminary studies on scattering amplitudes of SCS6
[16–18] reported results in favor of Yangian symmetry.
These findings came as a surprise since earlier attempts
had come short of realizing dual superconformal symmetry
in the string theory dual [19,20]. Dual superconformal
symmetry would imply a Yangian symmetry, although
the converse does not hold. Further studies are required

to see whether the Yangian symmetry of SCS6 extends to
all tree-level amplitudes and, if so, whether it originates
from some dual superconformal symmetry.
The aim of this Letter is to provide further support for

the relevance of Yangian symmetry in SCS6. Generalizing
the approach of [3], we present a generating function for
scattering amplitudes of SCS6 �L2k in Eq. (8)—in the
same sense as Ln;k of SYM4 and give a formal proof of its

Yangian invariance for all k.
We begin with a quick review of Witten’s twistor for-

mulation [21] on which Ln;k of [3] is based, and explain

how it should be generalized to three dimensions. Using a
supersymmetric version of the three dimensional twistor,
we write down the generating function L2k for SCS6 and
study its properties. We verify superconformal invariance,
cyclic symmetry and Yangian invariance, and also show
that it reproduces some known tree-level amplitudes. We
conclude with a discussion on dual superconformal sym-
metry and directions for future works.
Twistor in four dimensions vs three dimensions.—In four

dimensions, a null momentum can be written as a bi-spinor
p� _� ¼ �� �� _�. A standard way to introduce twistors [21]
is to take a Fourier transform of the plane wave eipx with
respect to one of the two spinors:

Z
eix� _��

� �� _�
e�i ����

�
d2� / �ð ��� � x� _�

�� _�Þ: (1)

The � function enforces the defining equation for the
twistor variables ( ���, �� _�). Equivalently, we can regard
��� ¼ �ið@=@��Þ as a ‘‘momentum operator’’ acting on
‘‘wave functions’’ in the (�, ��) space and reinterpret the
twistor equation as a wave equation,

ð ��� � x� _�
�� _�Þ expðix� _��

� �� _�Þ ¼ 0: (2)

In three dimensions, the bi-spinor notation involves a
single spinor, p�� ¼ ����. Introducing the operator
�� ¼ ið@=@��Þ, we can again realize the three dimen-
sional twistor equation [22,23] as a wave equation:

ð�� � x���
�Þ exp

�
� i

2
x���

���

�
¼ 0: (3)
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Drawing an analogy from quantum mechanics, we note
that the n-point amplitude can be treated as a wave func-
tion in 2n ‘‘coordinate’’ variables f��

i g (i ¼ 1; . . . ; n),
whereas the conformal symmetry SOð2; 3Þ ’ Spð4;RÞ
acts linearly on the 4n dimensional ‘‘phase space’’ parame-
trized by fZA

i ¼ ð��
i ; �i�Þg.

Supertwistor.—The on-shell superfield for SCS6 in-
volves three fermionic coordinates �I in addition to ��

[17]. The particle and antiparticle superfields take the form

� ¼ �4 þ �Ic I þ 1
2�IJK�

I�J�K þ 1
6�IJK�

I�J�Kc 4;

�� ¼ �c 4 þ �I ��I þ 1
2�IJK�

I�J �c K þ 1
6�IJK�

I�J�K ��4;

(4)

where the scalars � and fermions c are all understood as
functions of the momentum spinor �. The SO(6) R sym-
metry acting on the N ¼ 6 supercharges are realized by
�I and their conjugates 	I ¼ @=@�I through the oscillator
algebra,

f�I; 	Jg ¼ �I
J ðI; J ¼ 1; 2; 3Þ: (5)

Note that the quantum mechanics analogy introduced
above remains valid even after including fermions; while
the superamplitudeAð�Þ can be regarded as a wave func-
tion in the ‘‘half supertwistor’’ variables�i ¼ ð��; �IÞi, the
generators of the full superconformal symmetry OSpð6j4Þ
are represented by quadratic products of the ‘‘full super-
twistor’’ variables

ZA
i ¼ ð��;��;�

I; 	IÞi � ð�; @=@�Þi (6)

to be interpreted as operators acting on Að�Þ. In this
formulation, only the Uð1; 1j3Þ � OSpð6j4Þ acts linearly
on � with generators of the form (�@=@�). The rest of
the generators act, schematically, either as multiplications
(��) or as second order derivatives (@2=@�@�). Although
both � and � are subject to reality conditions, we will

loosely treat them as complex variables � 2 C2j3 in what
follows.

Amplitudes of SCS6.—The superfields � and �� in (4)
transform in mutually complex conjugate representations
of the gauge group; a prime example is UðNÞ � UðNÞ
gauge group with � transforming in (N, �N) and �� in ( �N,
N). Barring the possibility of a ‘‘baryonic’’ vertex such as
detð�Þ which scale as �N , the nonvanishing amplitudes

must carry equal number of � and ��. Moreover, one
can define color-ordered amplitudes such that the external

legs alternate between � and �� [17]. In summary, we
are interested in the nð¼ 2kÞ-point color-ordered super-
amplitudes

A n¼2kð�Þ ¼ A2kð�1;�2; . . . ;�2kÞ; (7)

where by convention we associate �oddðevenÞ to ��ð�Þ
(opposite to the convention of [17]). Because � and ��
carry opposite statistics, A2k acquires a factor of ð�1Þk�1

upon cyclic permutation by two sites [17]. The component
amplitudes can be read off from the superamplitude as
the coefficients of various monomials of �I

i . They are
rational functions of Lorentz invariant products of the

momentum spinors, hiji � ����
�
i �

�
j .

The generating function.—Our proposal for the generat-
ing function for the nð¼ 2kÞ-point amplitude is

L 2kð�Þ ¼
Z dk�2kC

vol½GLðkÞ�
�ðkðkþ1Þ=2ÞðCCTÞ�2kj3kðC�Þ

M1M2 � � �Mk

:

(8)

This form of L2k was partly motivated by the formal
similarity noted in [17] between A2k of SCS6 and A2k;k

of SYM4. As will become gradually clearer, both the
similarity and the difference between Ln;k of [3] and L2k

here can be traced back to the structure of the momentum
spinor: p� _� ¼ �� �� _� in four dimensions and p�� ¼ ����

in three dimensions.
The integration variable C is a (k� 2k) matrix. The dot

products denote ðCCTÞmn ¼ CmiCni, ðC�Þm ¼ Cmi�i. Mi

represents the ith minor of C defined by

Mi ¼ �m1���mkCm1ðiÞCm2ðiþ1Þ � � �Cmkðiþk�1Þ: (9)

The measure dk�2kC is covariant under a GLðkÞ � GLð2kÞ
group action on the left/right. The vol½GLðkÞ��1 factor
is a reminder that the GLðkÞ-left action is an exact sym-
metry of the integrand and should be ‘‘gauge fixed.’’ The
GLð2kÞ-right would-be symmetry is reduced to Oð2kÞ by
�ðCCTÞ, which is in turn broken spontaneously by �ðC�Þ
and explicitly by the denominator.
The cyclic symmetry of (8) is obscured by the presence

of only k out of 2k minors. However, one can use the
constraint CCT ¼ 0 to show that

MiMiþ1 ¼ ð�1Þk�1MiþkMiþ1þk: (10)

ThusL2k transforms in the same way asA2k under cyclic
permutation by two sites.
The net number of integration variables in (8) can be

counted as follows (cf. [3]). Starting from 2k2 elements
of C, subtracting k2 for the GLðkÞ gauge fixing and 2k
for the bosonic � functions, and pulling out the overall
momentum conserving � function, we are left with

2k2 � k2 � kðkþ 1Þ
2

� 2kþ 3 ¼ ðk� 2Þðk� 3Þ
2

: (11)

Superconformal invariance.—To begin with, note that
L2k has degree �2k in � and þ3k in � in agreement with
the degree counting forA2k from Feynman diagrams [17].
To verify superconformal invariance in the half supertwis-
tor notation, we need to consider three cases separately.
The �ðC�Þ factor is manifestly invariant under the linearly
realized Uð1; 1j3Þ subgroup. The two-derivative generators
ð@2=@�@�Þ acting on �2kj3kðC�Þ produces CCT to be
annihilated by �ðCCTÞ. To see the invariance under the
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multiplication generators (��), note that the constraint
CCT ¼ 0 generically defines k linearly independent null
vectors in C2k. One can construct another (k� 2k) matrixbC composed of k dual null vectors in C2k satisfying

bC � bCT ¼ 0; C � bCT ¼ Ik�k; (12)

and use the completeness relation for C and bC to write

�T �� ¼ �T � ðCT bCþ bCT
CÞ ��; (13)

which is annihilated by the �ðC�Þ factor.
Reproducing known amplitudes.—Only 4- and 6-point

amplitudes of SCS6 are available in the literature so far
[16–18]. In both cases, it is straightforward to show that
L2k reproduces the amplitudes mainly because there is no
integral to do according to the counting (11).

Here, we only discuss the 4-point amplitude and refer
the reader to [24] for the 6-point result. For simplicity, we
begin with the 4-scalar component amplitude [17],

A4� ¼ h13i3
h14ih43i�

ð3Þð�r�r þ ��s��sÞ; (14)

where we divided the particle indices fi ¼ 1; . . . ; 4g into
fr ¼ 1; 3g and f �s ¼ 2; 4g. Consider the partial Fourier
transform,

bA 4�ð�r;� �sÞ ¼
Z

A4�ð�r; ��sÞe�i��s��sd4��s; (15)

and introduce the ‘‘link matrices’’ (cf. [25]) defined by

��s ¼ �cr�s�r: (16)

After the change of variable from ��
�s to cr�s, we obtain

(up to an overall coefficient)

bA 4�ð�r;� �sÞ ¼
Z d4cr�s�

ð3Þð�rp þ cr�scp�sÞ
c14c34

eicr�s�r� �s : (17)

Taking the inverse Fourier transform back to A4�ð�r; ��sÞ
and reinstating the fermions, we recognize the final result
as a gauge-fixed version of L2k with

C ¼ c12 1 c32 0
c14 0 c34 1

� �
: (18)

Integrability via Yangian symmetry.—The original
superconformal invariance alone is far from sufficient to
determine the amplitude uniquely. For instance, we can
multiply L2k by an arbitrary function fðZiZjÞ without

breaking superconformal invariance, where the product
ZiZj is defined by the OSpð6j4Þ-invariant metric.

In four dimensions, under mild assumptions, Ln;k was

proven to be the unique Yangian invariants [26–28].
Encouraged by the Yangian invariance of 4- and 6-point
amplitudes [17] and the fact that L2k reproduces them, we
now move on to examine the Yangian invariance ofL2k for
all k. We will show that L2k is annihilated by the level one

Yangian generators, which together with the superconfor-
mal invariance guarantees the full Yangian invariance [10].
The uniqueness problem is left for a future work.
We mostly follow the methods developed in [26] to

prove the Yangian invariance of Ln;k. As shown in

[10,17], the level one Yangian generators can be written
in the bilinear form,

J A
B ¼ X

i<j

ð�1ÞCðJAi CJ
C
j B � JAj CJ

C
i BÞ; (19)

where JAi B are the superconformal generators acting on

the ith particle. In terms of the full supertwistors ZA
i , the

generators can be written as

J A
B ¼X

i<j

½ZA
i ZBjZC

iZCj � iZA
i ZBi � ði$ jÞ�: (20)

The key insight we adopt from [26] is thatZC
iZCj generates

an Oð2kÞ action on f�ig. Using the covariance of

�2kj3kðC�Þ, we can trade it with an inverse Oð2kÞ action
on the matrix C. In other words, we can replace ZC

iZCj by

Oij ¼ i
P

k
m¼1ðCmi@=@Cmj � Cmj@=@CmiÞ. The factors dC

and �ðCCTÞ are invariant under theOð2kÞ action, so we can
do an integration by parts to make Oij act on the denomi-

nator. Then, following essentially the same steps as in [26],
we can show that the quartic and quadratic terms in (20)
acting on L2k cancel each other.
Dual superconformal symmetry and momentum-

twistor.—In four dimensions, there is an alternative way
to prove the Yangian invariance directly through its rela-
tion to dual superconformal symmetry [10]. It was shown
in [29] that after a suitable change of variables, Ln;k can

be rewritten as Ln;k ¼ AMHV
n Rn;k, where AMHV

n is the

n-point maximally helicity violating (MHV) amplitude
and Rn;k is another integral formula with manifest dual

superconformal invariance [30]. The change of variable to
go from Ln;k to Rn;k can be interpreted in terms of the

‘‘momentum twistor’’ introduced in [31].
In our case, it is straightforward to make a change of

variable similar to that of [29] to obtain

L 2k ¼ �3ðPÞ�6ðQÞ
½h12i � � � h2k� 12kih2k1i�1=2 R2k: (21)

This factorization was noted previously in [17]. For the
bosonic variables, the notion of momentum twistor con-
tinues to hold with little modification. But, we have not
found a satisfactory interpretation for the new fermionic
coordinates that enter R2k in terms of a ‘‘momentum
supertwistor.’’
The relation between dual superconformal symmetry

and Yangian symmetry in SCS6 has been elucidated in a
very recent paper [32]. The dual superconformal genera-
tors are naturally defined in the ‘‘dual space’’ (cf. [7]),

x��i � x��iþ1 ¼ ��
i �

�
i ; 
I�i � 
I�iþ1 ¼ ��

i �
I
i : (22)
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According to [32], dual superconformal symmetry of SCS6
requires some additional bosonic coordinates in the dual
space, which account for the missing piece in previous
search [19,20] for dual superconformal symmetry via
‘‘fermionic T duality’’ in string theory [8,9]. How the
results of [32] may relate to the momentum-supertwistor
is an interesting open problem.

Outlook.—Although the results of this Letter are quite
suggestive, much work remains to be done to establish
the connection between the generating function L2k and
the amplitudes A2k to the same extent as their four di-
mensional counterparts. Among other things, a precise
prescription for the integration contour will be needed to
deduce recursion relations analogous to [33,34] from L2k,
which in turn could be related to the usual perturbation
theory in terms of Feynman diagrams. A completely rig-
orous proof of Yangian invariance [35] taking account of
anomalies in collinear limits [36] will also rely on the
correct choice of contours. A variant of the geometric
picture based on Grassmannian explained in [3] will be
very useful in solving the contour problem. Some of these
issues are currently under investigation and will be re-
ported in [24].
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