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1Grup de Fı́sica Teòrica, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

2School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
(Received 2 July 2010; published 8 October 2010)

We address on general quantum-statistical grounds the problem of optimal detection of the Unruh-

Hawking effect. We show that the effect signatures are magnified up to potentially observable levels if the

scalar field to be probed has high mean energy from an inertial perspective: The Unruh-Hawking effect

acts like an amplification channel. We prove that a field in a Fock inertial state, probed via photon

counting by a noninertial detector, realizes the optimal strategy attaining the ultimate sensitivity allowed

by quantum mechanics for the observation of the effect. We define the parameter regime in which the

effect can be reliably revealed in laboratory experiments, regardless of the specific implementation.
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Introduction.—The Unruh effect [1] is one of the most
fundamental manifestations of the fact that the particle
content of a field theory is observer-dependent [2]. A
quantum (scalar) field in the Minkowski-Unruh vacuum
from an inertial perspective is detected as thermal by a
Rindler observer in uniform acceleration. This is deeply
connected with the phenomenon of Hawking radia-
tion [3]. In the presence of an eternal black hole, if a scalar
field is in the Hartle-Hawking vacuum as observed by a
Kruskal observer (freely falling into the black hole), a
Schwarzschild observer outside the event horizon would
detect, again, a thermal state [4]. The temperature T of the
Unruh (Hawking) thermal bath depends on the observer’s
acceleration a (the black hole mass M [5]):

TUnruh ¼ @a

2�ckB
; THawking ¼ @c3

8�GMkB
; (1)

where c is the speed of light, kB is the Boltzmann constant,
and G is the gravitational constant. Despite their crucial
role in modern theoretical physics, no experimental veri-
fication of the Unruh-Hawking (UH) effects has been
accomplished so far, as conventionally the associated tem-
peratures lie far below any observable threshold. There
have been different proposals to detect the Unruh effect via
accelerated detectors [2], involving electrons in Penning
traps, atoms in microwave cavities, backreaction in ultra-
intense lasers, or Bose-Einstein condensates [7]. Another
path pursued in recent research is the detection of
Hawking-like effects in ‘‘artificial’’ black holes realized
in liquids, optical fibers, or condensed matter systems [8],
where a horizon analog (e.g., acoustic or optical) may be
created under controllable conditions.

In this Letter, borrowing rigorous methods from quantum
statistics and estimation [9], we investigate the ultimate
precision limits for the estimation of the UH temperature,
and we determine on fully general grounds the optimal con-
ditions for the revelation of UH effects. We are guided by an
interesting link between field theory and quantum informa-
tion: The change of coordinates between an inertial (or

freely falling into a black hole) observer—hereby called
Alice—and a noninertial (or escaping the fall outside the
horizon) observer—hereby called Rob—in the description
of the state of a scalar field is equivalent to the transforma-
tion that affects a light beam undergoing parametric down-
conversion in an optical parametric oscillator (see [4,10]).
Detection by an accelerated observer formally amounts to
the action of a bosonic amplification channel. We consider
the realistic possibility that, in a laboratory implementation,
the field mode can be prepared in an arbitrary state from
Alice’s perspective, beyond the typical Minkowski-Unruh
or Hartle-Hawking vacuum. We then devise the most suit-
able field states and the best detection schemes to be perfor-
med by Rob, in order to achieve optimal visibility and
sensitivity in measuring the UH temperature. We show that
having an increasingly large field energy from Alice’s per-
spective results in a magnification of the UH signatures. We
then prove that engineering the field in a Fock inertial state
followed by Rob’s photon counting allows for the opti-
mal estimation of the UH effect. Alternative valid strategies
involve coherent inertial states and Rob’s heterodyne
detections. Our findings are independent of the specialized
implementation, setting a general goal for any experiment
striving towards the unambiguous observation of the UH
effects.
The Unruh effect as a bosonic amplification channel.—

Let us set our notation by focusing, for ease of clarity, on
the framework of the Unruh effect in two-dimensional
Minkowski spacetime. We consider a scalar field which
is, from an inertial perspective, in a special superposition
of Minkowski monochromatic modes (see [6,11] for de-
tails) such that, in the Unruh basis [4,6,12], Alice detects
the field in the single-mode state jc 0i!. The annihilation
operator of the mode satisfies the bosonic commutation

relations: ½â!; ây!0 � ¼ �!;!0 . In Rindler coordinates the

field is described as an entangled state of two modes, truly
monochromatic with frequency ! [6] (from now on we
drop the frequency subscript), each living in one of the two
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Rindler wedges I (right) and II (left). The Rindler field

mode operators b̂I;II are connected to the Minkowski-

Unruh ones via a Bogoliubov transformation [4], â ¼
coshrb̂I � sinhrb̂II, where the ‘‘acceleration parameter’’ r
is proportional to the Unruh temperature: cosh�2r ¼ 1�
expð�@!=kBTÞ. A noninertial observer (Rob) in uniform
acceleration a is confined to Rindler region I. Thus the
equilibrium state from Rob’s viewpoint, in the Schrödinger
picture, is obtained by tracing over the modes in the

causally disconnected region II: %̂r ¼ TrII½ÛðrÞð%̂0 �
j0ih0jÞÛyðrÞ�. Here ÛðrÞ ¼ exp½rðb̂yI b̂yII � b̂Ib̂IIÞ� is the
two-mode squeezing operator that encodes the particle
pair production between the two Rindler wedges (or across
an eternal black hole horizon), and %̂0 � jc 0ihc 0j. Such a
phenomenon has a well known analog in quantum optics
[10], which plays a crucial role for continuous variable
quantum information [13]. An input signal beam in the
state %̂0 interacts with an idler mode (environment) in the
vacuum via a two-mode squeezing transformation (real-
ized by parametric down-conversion) with squeezing r.
Tracing over the output idler mode, the output signal is
left precisely in the mixed state %̂r. Overall, the nonunitary
transformation from input to output, or from inertial to
noninertial frame, corresponds to the action of a bosonic
amplification channel (see also [14]) and can be described

by the master equation d%̂r=dr ¼ tanhrL½b̂yI �%̂r, where

L½b̂yI �%̂r ¼ 2b̂yI %̂rb̂I � b̂Ib̂
y
I %̂r � %̂rb̂Ib̂

y
I . The solution to

the master equation, using the disentanglement theorem
[10], can be written as

%̂ r ¼ Nr

X1

k¼0

Ck
rðb̂yI ÞkðcoshrÞ�b̂y

I
b̂I%̂0ðcoshrÞ�b̂Ib̂

y
I b̂kI ; (2)

with Nr ¼ cosh�2r and Ck
r ¼ ðtanhrÞ2k=k!. Equation (2)

precisely denotes the state detected by Rob, who is non-
inertial with acceleration parameter r, corresponding to a
field mode state %̂0, with mean photon number (energy)

�n0 ¼ Tr½%̂0b
y
I bI�, from Alice’s inertial perspective.

Optimal estimation of the UH effect.—Suppose the fol-
lowing experiment is repeatedN times: The field is prepared
in the state %̂0 in the inertial frame, and then a positive-

operator-valued measurement (POVM) fÔ�g is performed

by Rob on the modes in Rindler region I. Here h�jÔ�j�i �
0 8 j�i and P

�Ô� ¼ 1. For each strategy S ¼ ð%̂0; ÔÞ,
one can construct an unbiased estimator �r for r, of minimum
variance [15] given by NVar½ �r� ¼ I�1

r ðSÞ. Here the Fisher
information IrðSÞ ¼

R
d�pð�jrÞð@ lnpð�jrÞ@r Þ2, with pð�j�Þ ¼

Tr½Ô�%̂r�, is a figure of merit characterizing the perform-

ance of the strategy: The higher the Fisher information (FI),
the more precise the estimation. At a fixed %̂0, the quantum
Cramér-Rao bound [16] states that for any strategy it is

IrðSÞ � Ið%̂0; Ô�̂Þ � Hrð%̂0Þ; i.e., there exists an optimal

POVM yielding maximum sensitivity that consists of pro-
jections on the eigenstates of the so-called ‘‘symmetric

logarithmic derivative’’ �̂%̂r
, an observable which depends

on %̂r and is defined implicitly as follows: 2d%̂r=dr ¼
�̂%̂r

%̂r þ %̂r�̂%̂r
. The FI associated to such optimal mea-

surement is known as quantum FI (QFI), Hrð%̂0Þ ¼
Tr½%̂r�̂

2
%̂r
�. Alternatively, the QFI can be computed from

the Bures metric [17], which in turn is related to the quan-

tum fidelity [18] F ð%̂1; %̂2Þ ¼ ðTr½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%̂1

p
%̂2

ffiffiffiffiffiffi
%̂1

pq
�Þ2 between

two infinitesimally close states (in our case, evolved from
the same %̂0): Hrð%̂0Þ ¼ 4½1�F ð%̂r; %̂rþdrÞ�=dr2. We will
now investigate strategies for the estimation of r, involving
Gaussian (coherent, squeezed) or non-Gaussian (Fock)
field states from Alice’s perspective beyond the typical
Minkowski-Unruh vacuum, and we will aim for those with
the highest possible (quantum) Fisher information [19–22].
Gaussian field states.—Gaussian states, e.g., ground and

thermal states of harmonic oscillators, play an important
role in quantum optics and many-body physics since they
are easy to manipulate mathematically and provide a good
description of states commonly produced in experiments.
We begin by considering a displaced squeezed pure
Gaussian field state %̂G

0 in the inertial frame. It can be

completely specified by its first moments �0 ¼ ðq0; p0ÞT
and its covariance matrix [13]

�0 ¼ e2scos2�þ e�2ssin2� sin2� sinh2s
sin2� sinh2s e�2scos2�þ e2ssin2�

� �
:

Here s > 0 is the squeezing degree, with phase �. Under
the action of the bosonic amplification channel associated
with the UH effect [Eq. (2)], the Gaussian state is trans-
formed into another Gaussian state %̂r characterized by the
following first and second moments [23]: �r ¼ Xr�0,�r ¼
Xr�

inXT
r þ Yr, where Xr ¼ coshr12 and Yr ¼ sinh2r12. In

order to compute the QFI via the Bures metric [24] (see
also [22]), we recall that the fidelity between two arbitrary
one-mode Gaussian states %̂G

1 and %̂G
2 , with respec-

tive covariance matrix �1;2 and first moments �1;2,

is F ð%̂G
1 ; �

G
2 Þ ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ �
p � ffiffiffiffi

�
p Þ�1 exp½�ð�2 � �1ÞT �

ð�1 þ �2Þ�1ð�2 � �1Þ� [25], where � ¼ detð�1 þ �2Þ
and � ¼ ðdet�1 � 1Þðdet�2 � 1Þ. In our case, we note
that the fidelity F ð%̂G

r ; %̂
G
rþdrÞ is minimized for � ¼ 0 and

q0 ¼ 0. The inertial energy of the Gaussian field becomes
�n0 ¼ sinh2sþ p2

0=2. By setting sinh2s ¼ x �n0 and p2
0 ¼

2ð1� xÞ �n0, we introduce an energy ratio x, ranging from
0 (purely coherent inertial state) to 1 (squeezed inertial

state) [20]. We finally obtain the QFI: Hr½%̂G
0 ð �n0; xÞ� ¼

f½2ðx � 1Þ �n0�=½coshð2rÞðx �n0 þ 1Þ � ffiffiffiffiffiffiffiffi
x �n0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x �n0 þ 1

p �g þ
f16x �n0=½coshð4rÞðx �n0 þ 1Þ � x �n0 þ 3�g � 2ðx � 1Þ �n0 �
2ðx � 1Þ �n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x �n0=ðx �n0 þ 1Þp þ 4. The maximal QFI is ob-

tained by numerical optimization over x for any given �n0
and r. For very small r, squeezed states from Alice’s
perspective are optimal (x ¼ 1), while for higher r a non-
zero displacement improves the estimation. The maximal
Hrð%̂G

0 Þ is a monotonically increasing function of the en-

ergy �n0 measured in the inertial frame (see Fig. 1, middle
surface). Therefore, by using suitable engineered Gaussian
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field modes one can significantly improve the sensitivity
in the detection of the UH effect compared to the case
of a Minkowski-Unruh vacuum, whose variance
H�1

r ½%̂G
0 ð0; 0Þ� ¼ 1=4 is actually the largest. However,

this strategy may be hard to implement in practice, as the
optimal Rindler measurement depends on r, thus requiring
an adaptive estimation scheme [9,20].

We can then consider the following simpler strategy. Let
%̂G
0 � j	0ih	0j be just a coherent state [with 	0 ¼ ðq0þ

ip0Þ=
ffiffiffi
2

p
]. Rob detects the field in a displaced thermal state

with energy j	rj2 ¼ cosh2rj	0j2. Let the POVM fÔ�g be a
heterodyne detection, i.e., projection onto a set of coherent
states, f1=�j�ih�jg. The FI associated to this strategy is
Irðj	0i; j�ih�jÞ ¼ 4ð1 þ �n0=2Þtanh2r < Hr½%̂G

0 ð �n0; 0Þ�.
Although suboptimal, this strategy still encodes an increase
in sensitivity with increasing inertial energy (displace-
ment), as shown in Fig. 1 (bottommost surface). Namely,
if �n0 � j	0j2 � 2=sinh2r, then the coherent strategy com-
bines practical feasibility with an arbitrarily good improve-
ment over the conventional vacuum case.

Fock field states.—We turn now to explore an estimation
strategy involving non-Gaussian field states. Let the state
be a Fock state %̂F

0 ¼ jn0ihn0j from Alice’s perspective,

for which trivially �n0 ¼ n0. From Eq. (2), the state as
detected by Rob is %̂F

r ¼ P1
k¼0 cn;kðrÞjn0 þ kihn0 þ kj,

with cn;kðrÞ ¼ ðnþk
n ÞðcoshrÞ�2ðnþ1Þtanh2kr. In this case, to

find the optimal measurement strategy, it is more conve-
nient to use the definition of the QFI in terms of the
symmetric logarithmic derivative. We find

Hrðj �n0iÞ ¼
X1

k¼0

½@c �n0;kðrÞ=@r�2
c �n0;kðrÞ

¼ 4ð1þ �n0Þ: (3)

As shown in Fig. 1 (topmost surface), the QFI for Fock
inertial states beats the optimal Gaussian one in the whole
parameter space (they coincide only in the limit r ! 0),
allowing for a significantly reduced variance in the esti-
mation of r at fixed �n0. The optimal measurement strategy
is in this case simply photon counting (independently of
the value of r). Thus, by having a field which is prepared in

a Fock state with high enough energy from an inertial
perspective (in the Unruh basis), one can estimate the UH
acceleration parameter—i.e., reveal the effect—with arbi-
trarily high sensitivity by simply letting Rob count photons
in the field he detects.
Ultimate quantum bound.—We will now prove that no

improvement over the above Fock-based quantum estima-
tion strategy can be achieved even by allowing causality
violation. Suppose a hypothetical observer existed, able to
measure jointly the field in the two spacelike separated
Rindler regions, i.e., able to estimate globally the two-
mode (unitary) squeezing transformation of coordinates

ÛðrÞ, so as to extract an ultimately precise estimator for r
without any information loss. The QFI Hmax

r in this un-

physical setup can be written as Hmax
r ¼ 4ðhĜ2i � hĜi2Þ

[9], where Ĝ ¼ �iðb̂yI b̂yII � b̂Ib̂IIÞ and the average is taken
over the state of the system plus idler (from an inertial

perspective), %̂0 � j0ih0j. We have hĜi ¼ 0 and hĜ2i ¼
1þ �n0. Hence the ultimate quantum bound on the estima-
tion of the UH effect is given byHmax

r ¼ 4ð1þ �n0Þ, exactly
equal to the QFI in Eq. (3). We conclude that, most notably,
Fock field states in the inertial frame, in conjunction with
photon counting performed by Rob (physically confined to
Rindler region I), allow for the absolutely optimal estima-
tion of r: No advantage could be achieved even if access to
the degrees of freedom in Rindler region II was permitted.
Discussion.—To draw more practical conclusions, it is

convenient to derive figures of merit associated with the
direct estimation of the UH thermal (amplification) energy
nT ¼ sinh2r, which amounts to the mean photon number
of a thermal mode with temperature T [Eq. (1)]. By using
Eq. (3) and the transformation rule for the FIs [9] InT ¼
Irð@r=@nTÞ2, the minimum variance corresponding to
the optimal detection of nT becomes NVarmin½ �nT� ¼
ðnT þ n2TÞ=ð1þ �n0Þ. For a single experimental run
(N ¼ 1), the relative error on the estimation of nT is

defined as "nT ¼ ðVarmin½ �nT�Þ1=2=nT ¼ ½ð1þ n�1
T Þ=ð1þ

�n0Þ�1=2. For a precise estimation, it must be "nT 	 1, i.e.,

�n 0 � n�1
T : (4)

This result defines the regime for optimal sensitivity [26],
and we will now link it with a simple assessment of
visibility of the UH effect. From Eq. (2) we have, for a
generic field state with mean energy �n0 as detected by

Alice, that the mean energy as detected by Rob is �nr ¼
Tr½%̂rb̂

y
I b̂I� ¼ �n0 þ nTð �n0 þ 1Þ. To make the UH effect ob-

servable, the energy difference (visibility) ��n ¼ �nr � �n0
must be at least of the order of one photon: ��n *
maxf1; nTg. Interestingly, the threshold in precision
[Eq. (4)] translates in a visibility ��n � 1þ nT , i.e., pre-
cisely the regime that renders the effect amenable to de-
tection. We conclude that Eq. (4) sets the ideal threshold on
the inertial field energy for any reliable—both accessible
and accurate—verification of the UH effect.
Additional fine-tuning is certainly needed to adapt our

general prescription to the facilities of specific proposals to

FIG. 1 (color online). Fisher information Ir corresponding,
from bottom to top, to coherent states in Alice’s frame and
heterodyne detection by Rob (blue), general Gaussian states in
Alice’s frame and optimal detection by Rob (green), and the
ultimate quantum bound, attained by Fock states in Alice’s frame
and photon counting by Rob (wire frame).
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measure the Unruh effect or to mimic Hawking radiation
[7,8]; this lies beyond the scope of this work. Just to have a
flavor of the involved orders of magnitude, let us consider
the setting of Rindler detectors (e.g., two-level atoms)
accelerated in microwave fields (! 
 1010 Hz) [2]. For
this example, we plot in Fig. 2 the relative error "nT in

the estimation of nT versus the acceleration a of the detec-
tor and the microwave field energy �n0 in the inertial frame.
While for �n0 ¼ 10�6 (a quasivacuum field) an acceleration
of at least 1025 g is needed to detect the Unruh bath, already
with �n0 ¼ 1 photon the threshold [determined by equality
in Eq. (4)] drops to a more accessible 1018 g: a dramatic
magnification of the Unruh effect. The error is further

reduced by a statistical factor
ffiffiffiffi
N

p
by repeating the experi-

ment N times. These are promising findings in view of the
recent progress in the production of Fock states in micro-
wave cavities and circuit QED [27] and in the degree of
control of the photon counting technique [28].

Conclusions.—We have proven that the UH effects are
magnified when a scalar field is in a state of nonminimal
mean energy, e.g., coherent or Fock, from an inertial per-
spective. Accessible and precise measurement of the UH
temperature is enabled by heterodyne detection or photon
counting performed by a noninertial observer. Beyond a
fundamental interest, our findings are of direct practical
relevance, delivering clear-cut prescriptions for the optimal
revelation of the UH effects, independent of the specific
implementation.
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