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Void of any inherent structure in classical physics, the vacuum has revealed to be incredibly crowded

with all sorts of processes in relativistic quantum physics. Yet, its direct effects are usually so subtle that

its structure remains almost as evasive as in classical physics. Here, in contrast, we report on the discovery

of a novel effect according to which the vacuum is compelled to play an unexpected central role in an

astrophysical context. We show that the formation of relativistic stars may lead the vacuum energy density

of a quantum field to an exponential growth. The vacuum-driven evolution which would then follow may

lead to unexpected implications for astrophysics, while the observation of stable neutron-star configura-

tions may teach us much on the field content of our Universe.
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Born from the efforts to formulate a consistent relativ-
istic version of quantum mechanics, the successful formal-
ism of quantum field theory (QFT) has unveiled an
incredibly rich structure for what was thought in classical
physics to be the most uninteresting of the states: the
vacuum. From the early Dirac sea of negative-energy states
to the picture of virtual particles constantly being created
and annihilated, the vacuum has acquired conceptual im-
portance for a consistent description of nature. However,
from the observational point of view, its existence contin-
ues to be almost as evasive as in classical physics, demand-
ing carefully designed experiments in order to detect its
subtle effects. (The Casimir effect [1], according to which
two (or more) objects experience a force between them
solely due to the fact that their presence changes the
vacuum energy in a position-dependent way, is such an
example, successfully observed in laboratory. See, e.g.,
Refs. [2,3].) Particularly interesting is the fact that the
vacuum, being a dynamical entity, gravitates, which using
the concepts of general relativity (GR) means that it affects
and is affected by the geometry of the spacetime. This rests
at the root of the Hawking effect [4,5], according to which
black holes should emit a thermal bath of particles.
Although this semiclassical-gravity effect of ‘‘black hole
evaporation’’ has become a rare landmark for those who
seek a complete quantum gravity theory, it is virtually
unobservable for realistic astrophysical black holes. Here,
in contrast, we investigate possible astrophysical implica-
tions of a recently proposed semiclassical-gravity mecha-
nism [6] by which the vacuum of free quantum fields is
forced to play a central role. We focus on the context of
relativistic stars and show that the formation of (realistic)
compact objects may disturb the vacuum of a quantum
field in a way which leads its energy density to an expo-
nential growth. Eventually, this vacuum energy should take
control over the evolution of the background spacetime,

determining the ultimate fate of the relativistic star and
possibly leading to unexpected implications for astrophys-
ics. On the other hand, the observation of stable neutron-
star configurations may be used to rule out the existence of
fields for which the effect should have been triggered.
Vacuum energy in gravitational fields.—The task of cal-

culating ‘‘vacuum energies’’ of quantum fields in gravita-
tional backgrounds is one which is properly addressed
(though not easily performed in general) only by using
techniques of quantum field theory in curved spacetimes
(QFTCS), which is the minimal and most conservative way
of merging the successful formalisms of QFT and GR
[7–12]. Born more than four decades ago [7,8], QFTCS
has proven its value by providing the proper context in
which legitimate ‘‘low-energy’’ (i.e., below Planck scale)
quantum gravitational phenomena, like black hole evapora-
tion, could be unveiled. Therefore, before presenting the
arguments which lead to our main result, let us give the
reader a brief overview on how to obtain the vacuum energy
of a quantum field in a curved background using the canoni-
cal approach to QFTCS. In a nutshell, it goes as follows:
(i) one solves the generally covariant field equation for a

complete set of normal modes fuðþÞ
� ; uð�Þ

� g of the field� in a
given fixed background geometry with appropriate bound-
ary or initial conditions which express the choice of the
(Fock) Hilbert space of interest; (ii) one (formally) expands

the field operator �̂ using these normal modes with the

operator coefficients of the positive-norm uðþÞ
� (negative-

norm uð�Þ
� ) modes being interpreted as the annihilation

(creation) operators for that particular mode; (iii) then one

(formally) constructs the stress-energy-tensor operator T̂��

out of its classical expression by substituting � by �̂, and
calculates its expectation value in the state of interest (usu-
ally the vacuum of the chosen Fock Hilbert space). Since

T̂�� is a quadratic expression in �̂ (which should be viewed
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as an operator-valued distribution), some regularization and
renormalization procedures must be applied in step (iii) in
order to give rise to an expectation value which is free from
ultraviolet divergences.

Because the background spacetime has to be fixed al-
ready in step (i), the procedure outlined above is expected
to give meaningful results whenever the backreaction of

the expectation value of T̂�� on the background spacetime

(through the semiclassical Einstein equations) can be
neglected. Notwithstanding, failure to comply with this
condition can be used to expose situations where
semiclassical-gravity effects become crucial. This is the
strategy we follow here.

Disturbing the vacuum during the formation of a star.—
For the sake of simplicity, we follow Ref. [6] and consider
a real scalar field � with mass m � 0 and arbitrary cou-
pling � with the Ricci scalar curvature R. The field equa-
tion is the usual Klein-Gordon equation with the additional
scalar-curvature coupling: ð�hþm2 þ �RÞ� ¼ 0. (We
adopt natural units in which @ ¼ c ¼ 1 unless stated oth-
erwise.) We consider the case in which matter initially
scattered throughout space with very low density eventu-
ally collapses to form a static (and stable) spherically
symmetric compact object (according to classical GR).
Therefore, the background metric can be taken to be
asymptotically flat in the past and asymptotically static
and spherically symmetric in the future:

ds2�
��dt2þd~x2; past

fð�dt2þd�2Þþr2ðd�2þ sin�2d’2Þ; future
(1)

where f ¼ fð�Þ> 0 and r ¼ rð�Þ � 0 are functions of the
coordinate � alone, with fð�Þ ! 1 and rð�Þ=� ! 1 for
� ! 1, and dr=d� > 0 so that no trapped lightlike surface
is present.

The natural in-vacuum state is the one associated with

the normal modes uðþÞ
~k

and uð�Þ
~k

� ðuðþÞ
~k
Þ� which in the

asymptotic past take the form of the usual flat-space
stationary modes:

uðþÞ
~k

�pastð16�3!~kÞ�1=2e�ið!~kt� ~k� ~xÞ; (2)

where ~k 2 R3 and !~k
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

p
is interpreted as the

energy of the mode. Since the spacetime is also asymptoti-
cally static in the future, after the compact object is formed,
there is a natural out-vacuum state, which is the one

associated with a different set of normal modes vðþÞ
$l� and

vð�Þ
$l� � ðvðþÞ

$l�Þ� which in the asymptotic future assume the

stationary form

vðþÞ
$l� �future½ ffiffiffiffiffiffiffi

2$
p

fð�Þrð�Þ��1e�i$tF$lð�ÞYl�ð�;’Þ; (3)

where Yl� (l ¼ 0; 1; 2; . . . and � ¼ �l; . . . ; l) are the usual

spherical-harmonic functions and F$l are solutions of
Schrödinger-type equations

ð�d2=d�2 þ VðlÞ
effÞF$l ¼ $2F$l (4)

satisfying usual boundary conditions and normalization.
Here, $ is the energy of the mode (which no longer needs
to be greater than m) according to static observers in the
asymptotic future which are far away from the compact

object. The effective potential VðlÞ
eff ¼ VðlÞ

effð�Þ is given by

VðlÞ
eff ¼ f½m2 þ �Rþ lðlþ 1Þ=r2� þ ð1=rÞd2r=d�2: (5)

The functions fð�Þ and rð�Þ can be related to the matter-
energy distribution of the compact object through
Einstein’s equations of GR. For instance, assuming the
compact object to be made of perfect fluid (an assumption
which will be used throughout this article for simplicity),
the effective potential can be put into the form

VðlÞ
eff ¼ f

�
m2 þ ð�� 1=6ÞRþ lðlþ 1Þ

r2
þ 8�G

3
ð ��� �Þ

�
;

(6)

where � ¼ �ð�Þ is the matter-energy density of the com-
pact object and �� ¼ ��ð�Þ represents its averaged value up
to �: ��ð�Þ :¼ 3Mð�Þ=ð4�rð�Þ3Þ, with Mð�Þ being the
mass of the object up to �. (Recall also that, according to
GR, R ¼ 8�Gð�� 3pÞ, where p is the pressure which
sustains the configuration of the compact object and G is
Newton’s gravitational constant.)
In general the in- and out-vacuum do not coincide, which

means that particles are created due to the change in the
gravitational background. However, this particle creation is
usually negligible. In contrast, as recently pointed out in a
quite general context [6], there is another possible influence
of the gravitational background on the quantum vacuum:
well-behaved gravitational fields may trigger an exponen-
tial increase of the vacuum energy density leading to a
vacuum-dominated scenario. Applied to the context of
compact objects, the gravitational fields which are entitled
to ‘‘awake’’ the vacuum energy are the ones for which the
effective potential in Eq. (6) gets sufficiently negative
somewhere in the asymptotic future so that Eq. (4) pos-
sesses well-behaved solutions F$l for $

2 ¼ ��2 < 0. In

this case, additional, nonstationary, normal modes wðþÞ
�l�

and wð�Þ
�l� � ðwðþÞ

�l�Þ� with the asymptotic behavior

wðþÞ
�l� �future ðe

��tþi�=12þ e�t�i�=12Þffiffiffiffiffiffiffi
2�

p F$lð�Þ
rð�Þ Yl�ð�;’Þ (7)

are necessary in order to expand the field in the asymptotic
future. This implies that at least some of the in-modes
eventually go through a phase of exponential growth, which
leads to an exponential increase of the vacuum expectation

value of �̂2. This is then reflected in an exponential growth

of the vacuum expectation value of T̂�� (see Eqs. (10–13)

of Ref. [6]). (It is important to note that this asymptotic
divergence has nothing to do with high-frequency modes,
so that renormalization plays no important role in this
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analysis.) As a consequence, no matter what the value of the
classical energy density of the compact object is,
eventually the vacuum energy density (and pressure, and
momentum density) of the field will dominate and take
control over the spacetime evolution.

Sharp transition to vacuum dominance in relativistic
stars.—It is interesting to note that in principle the
vacuum-dominance effect could be triggered for massive

fields with m2 � R�G� (so that a region where VðlÞ
eff is

negative might exist for values of j�j not too large).
However, recovering the units in which these quantities
are usually expressed, this condition implies

m2=ð3:5	 10�12 eVÞ2
�=ð1014 g=cm3Þ � 1: (8)

Therefore, considering that relativistic stars can reach den-
sities �� 1014–1017 g=cm3 [13], the most ‘‘natural’’ mass
satisfying this is m ¼ 0, which we shall assume in what
follows.

It may come as a surprise to verify that the simplest
distribution possible for an idealized compact object, the
uniform energy-density distribution, is already entitled to
awake the vacuum energy of quantum fields. Assuming
� ¼ �� � �0, the Tolman-Oppenheimer-Volkoff (TOV)
equation of relativistic hydrostatic equilibrium can be an-
alytically integrated to obtain the pressure distribution p
and then the function f (see, e.g., Ref. [14]). Then, sub-
stituting these into Eq. (6), a numerical search for ‘‘bound’’
solutions of Eq. (4) with $2 < 0 (and l ¼ 0, which is the
most promising case) can be performed for several values
of the radius Rs and the mass M ¼ 4��0R

3
s=3 of the

compact object. In this uniform-density case, the existence
of such bound solutions depends only on the ratio M=Rs

and the value of �. The results of this search are shown
in Fig. 1. We see that a massless field with any value of
� > 1=6 or � & �2 can have its vacuum energy density
exponentially amplified for some range of M=Rs.
This idealized uniform-density case serves to illustrate

that well-behaved background geometries can indeed
induce the vacuum-dominance effect for fields with appro-
priate masses and scalar-curvature couplings. This, how-
ever, is not enough if we want to explore possible
observational implications. For that matter, more realistic
density and pressure profiles for the compact object have to
be used. Although there is a certain amount of uncertainty
on the correct equation of state for matter at densities as
high as 1015–1017 g=cm3, the density profile of realistic
neutron stars with masses 1:5M
 � 2:2M
 can be closely
approximated by a parabolic radial dependence, � ¼
�cð1� r2=R2

sÞ [15], where �c ¼ 15M=ð8�R3
sÞ is the cen-

tral density. In this case, the TOV equation can also be
analytically integrated to obtain the pressure distribution p
and the background metric [16], and a numerical search for
bound solutions of Eq. (4) with$2 < 0 (and l ¼ 0) can be
performed, as in the previous case. The existence of bound
solutions again depends only on the ratio M=Rs and the
value of �. The results of this search are shown in Fig. 2.
Note that Figs. 1 and 2 are very similar but it is worthwhile
to point out that in this more realistic case the effect is
triggered for smaller values of M=Rs. In particular, values
of M=Rs for which most realistic equations of state are
causal [15], and which represents classically stable con-
figurations, can awake the vacuum of fields with proper
couplings.
The time scale which governs the exponential growth of

the vacuum energy density, energy flow and pressure is

given by��1 (which usually is of order jVðlÞ
eff j�1=2). In fact,

the dominant contribution to the vacuum energy density in
the asymptotic future can be estimated from Ref. [6]:
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FIG. 1. Diagram showing the values of the ratio M=Rs of
uniform-density compact objects which trigger the exponential
growth of the vacuum energy density of massless scalar fields
with coupling � (dark-gray region). The vertical dashed line
indicates the conformal-coupling value � ¼ 1=6. The black
region represents the values of M=Rs for which no equilibrium
can be classically obtained.

FIG. 2. Same as diagram in Fig. 1 but now for compact objects
with parabolic density profile. The light-gray region represents
values of M=Rs for which equilibrium configurations are clas-
sically unstable for most realistic equations of state (see, e.g.,
Ref. [15]).
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�V �future�hð �rÞe2�t=R3
s � hð �rÞ exp

�
t=ð10�5 sÞ
Rs=ð10 kmÞ

�

	 10�62 g=cm3

R4
s=ð10 kmÞ4 ; (9)

where hð�rÞ is a dimensionless function of �r :¼ r=Rs and
we have used that for a bound solution �� 1=Rs. The
exact values assumed by hð�rÞ depend on the details of the
spacetime evolution between the two static asymptotic
regions, but for �r� 1 its order is not far from one (though
it is exponentially damped for large values of �r). Therefore,
for a compact object with radius Rs � 10 km whose
effective potential happens to possess a bound solution, it
would take only a few milliseconds (according to far away
observers) for the vacuum energy density to become over-
whelmingly dominant over classical matter densities as
high as 1014–1017 g=cm3. This suggests that the transition
from classical to vacuum dominance can be very sharp. In
spite of this, we emphasize that the total vacuum energy is
conserved (as it should in this static scenario where back-
reaction is not considered) due to the fact that the volume
integral of hð �rÞ vanishes.

Final Comments.—Although we have been talking about
‘‘vacuum dominance’’ of quantum fields, we would like to
clarify that the appearance of exponentially growing
modes already occurs in the classical level. This is evident
from our argument that the modes given in Eq. (7) are
necessary in order to expand an arbitrary (classical) field
configuration. Therefore, the very same situations which
trigger the exponential growth of the vacuum energy den-
sity will most likely lead to an exponential growth of the
classical energy density stored in an initially nonvanishing
field configuration. Here, however, we have opted to focus
on the quantum version of the effect since it is triggered
even in the absence of any initial classical perturbation,
which makes its consequences more robust than the ones
coming from its classical counterpart. The existence of
initial classical perturbations can change the details but
not the conclusion about whether or not the compact object
will face the exponential instability, which is the main
issue here.

The vacuum-awakening effect unveils a quite interesting
interplay between semiclassical gravity and observational
astrophysics. Concerning field theorists, the observation of
some relativistic stars may be used to rule out the existence
of certain fields in nature. For instance, according to our
Fig. 2, the observation of a stable and approximately spin-
less cold neutron star with mass M and radius Rs (with an
approximately parabolic density profile) rules out the ex-
istence of massless scalar fields with couplings � for which
(�, M=Rs) lie in the dark-gray region. Considering that
95% of the energy content of the Universe is unknown,
finding ways of testing the existence of free fields (for
which there would be no reason to assume an initial clas-
sical perturbation) is very welcome. Finally, concerning

astrophysicists, the awakening of the vacuum energy of
certain fields may determine the ultimate fate of some
relativistic stars. This will eventually depend on how the
vacuum energy backreacts on the spacetime, as ruled by the
semiclassical Einstein equations. The vacuum-driven evo-
lution may lead, e.g., to (i) a complete collapse, hiding the
negative-effective-potential region inside an event horizon,
or (ii) an explosion, ejecting mass and bringing the effective
potential back to a profile admitting no bound solution (or
possibly a combination of both). Only a detailed numerical
analysis, beyond the scope of this Letter, can decide what
will happen once backreaction is taken into account.
Either way, we would have an unusual situation where
the vacuum would be responsible for an event of astrophys-
ical proportions.
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