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In this Letter we show that the time reversal asymmetry of a stationary time series provides information

about the entropy production of the physical mechanism generating the series, even if one ignores any

detail of that mechanism. We develop estimators for the entropy production which can detect nonequi-

librium processes even when there are no measurable flows in the time series.
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The relationship between irreversibility and entropy
production forms the core of thermodynamics and statisti-
cal mechanics. However, it had not been formulated
quantitatively until the recent introduction of the
Kullback-Leibler distance or relative entropy in the context
of fluctuation and work theorems [1]. The relative entropy
between two probability distributions, pðxÞ and qðxÞ is
defined as

DðpkqÞ � X
x

pðxÞ logpðxÞ
qðxÞ ; (1)

and is a measure of their distinguishability [2]. The average
entropy production associated with a process driven by an
external agent turns out to be equal to the relative entropy
between the two probability distributions describing the
process running forward and backward in time [1,3–6].
This relative entropy can be thought of as the distinguish-
ability between the process and its time reverse, i.e., as the
irreversibility exhibited by the process. The relationship
between entropy production and relative entropy has been
derived in different scenarios, Hamiltonian dynamics [1,3]
and Langevin dynamics [5], and has also been tested in
experimental situations [5].

When applied to nonequilibrium stationary states
(NESS), the entropy production per unit time reads

h _Si
k

¼ lim
t!1

1

t
D½pðfxð�Þgt�¼0Þkpðfxðt� �Þgt�¼0Þ�; (2)

where k is the Boltzmann constant and pðfxð�Þgt�¼0Þ is the
probability of observing a given trajectory fxð�Þgt�¼0 in

phase space. Since we focus on stationary trajectories—
where the external forcing, if any, is constant—there is no
need to reverse the driving in the backward process.
Moreover, a sufficiently long single trajectory can provide
all the necessary statistics to compute the relative entropy
in Eq. (2) and consequently the entropy production rate.

Fortunately, the full information of the trajectory in the
phase space is not always necessary. Equation (2) follows
immediately from the Gallavotti-Cohen theorem [7],
by replacing the relative entropy between trajectories
with DðpSðsÞkpSð�sÞÞ, where pSðsÞ is the probability to

observe an entropy production s in a time interval ½0; t�.
In general, the relative entropy calculated using partial
information, f~xð�Þgt�¼0 where ~xð�Þ is a noninvertible func-
tion of xð�Þ, only provides a lower bound on the average
entropy production [1,6,8]. For stationary trajectories, in-
stead of Eq. (2) one obtains a lower bound, which is met if
~xð�Þ univocally determines the entropy production s.
For discrete stationary trajectories x1; . . . ; xn, we can

define the relative entropy of n-strings as

DnðpFkpBÞ �
X

x1;...;xn

pðx1; . . . ; xnÞ logpðx1; . . . ; xnÞpðxn; . . . ; x1Þ : (3)

Following the above arguments, we arrive at

h _Si
k

� dðpFkpBÞ � lim
n!1

1

n
DnðpFkpBÞ: (4)

This equation reveals a striking connection between
physics and the statistics of a time series. The left-hand
side is a purely physical quantity (it is proportional to the
average dissipated energy per step), whereas the right-hand
side is a statistical magnitude depending solely on the data
x1; x2; . . . , but not on the physical mechanism generating
those data. Such a connection is a generalization of
Landauer’s principle relating entropy production and logi-
cal irreversibility [1,9,10]. Equation (4) extends this prin-
ciple and suggests that we can determine the entropy
production of an arbitrary NESS by computing the relative
entropy of forward and backward trajectories. We could,
for instance, determine whether a biological process is
active or passive or even estimate, or bound, the amount
of consumed ATP by measuring the relative entropy of data
generated in the process.
In this Letter we explore the feasibility of such a tech-

nique by analyzing the validity of Eq. (4) and developing
estimators of the relative entropy. Our approach is general,
but we use a discrete flashing ratchet as a case study,
wherein direct comparison between analytical and empiri-
cal values of the relative entropy and the entropy pro-
duction is possible. There have been previous attempts
to distinguish between equilibrium and NESS. Martin
et al. checked the fluctuation dissipation relationship in
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experimental data from hair bundles of hair cells [11], but
this approach needs two types of data: spontaneous and
forced fluctuations. Amann et al. analyzed the possibility
to discriminate between equilibrium and nonequilibrium in
a three state chemical system [12]. Finally, Kennel intro-
duced in [13] criteria based on compression algorithms to
distinguish between symmetric and asymmetric time series
in the context of chaotic signals, without any connection to
dissipation. As we show in this Letter, relative entropy
provides a more general and simpler framework for the
problem of distinguishing between equilibrium and NESS
and, moreover, yields estimations and lower bounds on the
entropy production.

Two strategies have been considered to estimate the
relative entropy between stochastic processes: the first is
based on brute-force counting of n-strings, obtaining em-
pirical estimates of pðx1; . . . ; xnÞ, and computing Dn using
Eq. (3); the second is based on string parsing, the basic
procedure of the Lempel-Ziv compression algorithm [14].

The first strategy is simpler and more effective for
Markov chains. Our results indicate that this is still the
case for some non-Markov process [15]. Consequently, we
will restrict ourselves in this Letter to estimations of rela-
tive entropy from empirical probability distributions.

If the process and its reverse are Markovian,
pðx1; x2; . . . ; xnÞ ¼ pðx1Þpðx2jx1Þ � � �pðxn�1jxnÞ, the rela-
tive entropy rate d defined in Eq. (4) can be expressed in
terms of the relative entropy between distributions of sub-
strings of size 2:

dðpFkpBÞ ¼
X
x1;x2

pðx1; x2Þ logpðx2jx1Þpðx1jx2Þ ¼ D2 �D1: (5)

In the specific case of a trajectory and its reverse, the one-
time statistics are identical and D1ðpFkpBÞ ¼ 0. Then for
Markovian dynamics dðpFkpBÞ ¼ D2, which can be cal-
culated by frequency counting if the number of states and
possible transitions is not large. In general, if one defines

dk � Dk �Dk�1 (6)

then dk ! d for k ! 1. The limit is reached for finite k for
the so-called kth order Markov chains, i.e., when blocks of
size k, Xk � ðxn; . . . ; xnþk�1Þ, are Markovian [16]. In this
case dðpFkpBÞ ¼ dkþ1 ¼ dkþ2 ¼ � � � . For more general
processes, we will use the following ansatz, proposed in
Ref. [17] for Shannon entropy estimation:

dk ¼ d1 � c
logk

k�
; (7)

where c and � are parameters that, together with d1, can be
obtained by fitting the empirical values of dk vs k.

We have tested the accuracy of these estimators and of
the bound (4) in a specific example: a discrete flashing
ratchet [18], consisting of a particle moving in a one-
dimensional lattice. The particle is at temperature T and
moves in a periodic and asymmetric potential of height 2V,

which is switched on and off at a rate r (see Fig. 1).
Trajectories are described by two variables: the position
of the particle, x ¼ f0; 1; 2g, and the state of the potential
(on or off), y ¼ f0; 1g.
To define the dynamics of the particle, we start with

a continuous time description based on rates of spatial
jumps and switching. We assume that the motion in each

potential obeys detailed balance: ki!j ¼ e��½ðVj�ViÞ=2�, and
ki0!j0 ¼ 1 for i; j ¼ 0; 1; 2with i � j. The system is driven

out of equilibrium by imposing constant switching rates
ki!i0 ¼ ki0!i ¼ r, i ¼ 0; 1; 2, which do not obey detailed
balance.
We will focus on the dissipation per step: from the

continuous trajectory ½xðtÞ; yðtÞ� we generate a series
ðxn; ynÞ comprising the states visited by the system. That
is, we drop the information of the times when jumps or
switches occur. ðxn; ynÞ is a Markov chain with transition
probabilities given by p�!� ¼ k�!�=

P
�k�!�, with

�;� ¼ 0; 1; 2; 00; 10; 20. Introducing these probabilities in
Eq. (5), dðpFkpBÞ ¼ �

PhV� � V�i, where the sum

runs over transitions mediated by the thermal bath, i ! j,
i0 ! j0. The relative entropy turns out to be the average
dissipation per step in units of kT and we recover the main
result, Eq. (2) [19]. It is also interesting to explore the
relationship between d2 and the stationary flows J�� ¼
p�� � p�� between states �; � ¼ 0; 1; 2; 00; 10; 20. If

J�� � p��, we have

d2 ’
X
��

ðJ��Þ2
2p��

¼ X
�<�

ðJ��Þ2
p��

; (8)

which is a well-known expression of the entropy produc-
tion in continuous Markov systems [20], where d2 ¼ d.
Figure 2 shows the dissipation, calculated analytically

by solving the six-state Markov chain in the stationary
regime, and the estimations discussed above. Because of
Markovianity, relative entropies, dk, immediately converge
d ¼ d2 ¼ d3 ¼ � � � and d is equal to the entropy produc-
tion per step. As long as one has a good estimation of
pðx1; . . . ; xkÞ, our approach provides accurate values of the
entropy production, which is the case for weak potentials
V ’ kT. If V � kT, then uphill jumps, 0 ! 1, 0 ! 2, and
1 ! 2, are so unlikely that they do not occur in a finite
trajectory. The higher order the statistics, the earlier this
problem arises, as shown in Fig. 2. The reason is that

FIG. 1. Discrete ratchet scheme. Particles can jump between
the states i ! j, i0 ! j0, and i ! i0 in a flashing asymmetric
potential of height 2V with periodic boundary conditions. The
switching rate of the potential is r.
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d3 involves probability distributions of three-step trajecto-
ries, the sampling space is bigger, and it is easier that some
transitions i ! j ! k do not appear while their reverse
does. Although these jumps are very unlikely, they con-
tribute significantly to d, as shown in Fig. 2, where d2 and
d3 have been calculated by restricting the sum in Dk to
strings satisfying pðx1; . . . ; xkÞ � 0 and pðxk; . . . ; x1Þ � 0.

In real applications, it is more likely that one has only
partial information of the trajectories. To study the accu-
racy of our estimators and of the inequality (4) in this case,
we remove the information of the state of the potential and
consider trajectories described only by the position fxkgnk¼1,

which in general are not Markovian. As a consequence, the
estimation of the relative entropy dðpFkpBÞ is more diffi-
cult, but even a good estimation of d only provides a lower
bound on the relative entropy. It is known that the
Gallavotti-Cohen symmetry does not hold in the continu-
ous flashing ratchet if the state of the potential is not
considered [21]. In fact, the bound (4) can be quite loose.
For instance, if r ! 1, switching is very fast and the
particle moves in an effective potential (the average of on
and off) which is periodic. The position xk becomes
Markovian and the current vanishes. Using Eq. (8) one
arrives at d ¼ d2 ¼ 0, whereas the dissipation per step is
nonzero.

In most cases, however, the bound given by Eq. (4)
provides significant information. In Fig. 3 we show the
estimation of d using the empirical values of dk for k ¼
2; 9, and the extrapolation d1 resulting from the fit of the
ansatz in Eq. (7). The error bars in Fig. 3 correspond to the
error in the fit with a confidence interval of 90%. Our
estimations clearly distinguish between the equilibrium
case (V ¼ 0) and the NESS. The empirical dk with k > 3
correctly reproduce the order of magnitude of the actual

dissipation (see inset in Fig. 3), although they underesti-
mate it. There are two possible causes for this deviation:
either we are underestimating the actual relative entropy d
or the bound provided by Eq. (4) is not tight. To clarify this
question we need an analytical calculation of the relative
entropy between two non-Markov processes. In our case,
the relative entropy Dn reads

Dn ¼
*
log

P
y1;...;yn

pðx1; y1; . . . ; xn; ynÞP
y1;...;yn

pðxn; yn; . . . ; x1; y1Þ
+
; (9)

where the average is taken over all possible trajectories.
The probability distribution pðx1; y1; . . . ; xn; ynÞ ¼
pðx1; y1Þ � pðx2; y2jx1; y1Þ � � � � � pðxn; ynjxn�1; yn�1Þ
is known, but Eq. (9) cannot be calculated exactly.
Fortunately, the log in Eq. (9) is a self-averaging quantity
for large n [22] and we can compute the average using a
single long typical trajectory [15]. We show in Fig. 3 the
value of d obtained by this Monte Carlo semianalytical
calculation (purple crosses), which is very close to the
estimation d1 based on the ansatz Eq. (7).
Although the relative entropy d underestimates the ac-

tual dissipation, it does reproduce its asymptotic behavior.
Entropy production decreases as V2 for small V, so do d1
and d9 (see inset of Fig. 3). On the other hand, d2 / V6,
since the current is J / V3 [see Eq. (8)].
We have found in several instances a similar qualitative

improvement on the estimation of relative entropy when
using blocks of size bigger than two. In particular, d3 and
above outperform d2, which, as indicated by Eq. (8), is

FIG. 2 (color online). Average dissipation per step (in units of
kT) in the flashing ratchet (r ¼ 1) and different estimations of
relative entropy using a trajectory with n ¼ 106 steps and full
information, as a function of V=kT: analytical calculation of the
average dissipation (black line), d2 (blue circles), d3 (red
squares).

FIG. 3 (color online). Average dissipation per step (in units of
kT) in the flashing ratchet (r ¼ 1) and different estimations of
relative entropy using a trajectory with n ¼ 107 steps and partial
information (position) as a function of V=kT: analytical calcu-
lation of the average dissipation (black line), d2 (blue circles), d9
(green diamonds), d1 in Eq. (7) (orange hexagons with error
bars), and Monte Carlo semianalytical calculation of d (purple
crosses). Inset: Estimators for weak potentials in a log-log plot.
We have added in the inset the analytical calculation of d2 (blue
solid line).
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equivalent to the standard calculation of entropy produc-
tion using the currents observable from the available data,
in our case, the spatial current. For a striking illustration of
this effect we add an external force F to the flashing ratchet
and study dissipation and relative entropy close to the
stalling force Fstall, for which the spatial current and d2
both vanish. Jumping rates are now biased in the direction
of the force, giving the following detailed balance condi-

tion ki!j=kj!i ¼ e��ðVj�Vi�FLijÞ, Lij ¼ 1 being the dis-

tance between i and j.
We have plotted in Fig. 4 the real dissipation, the ana-

lytical value of d and d2, and the empirical values of d2, d3,
and d9, close to the stalling force Fstall. Recall that, for
F ¼ Fstall, the position of the particle does not exhibit any
flow and its average position remains constant. Conse-
quently, d2 or any other estimation of entropy production
based on flows will fail. However, the relative entropy
calculated using blocks of size 3 captures the nonequilib-
rium nature of the time series.

In conclusion, we have shown that the statistical prop-
erties of a time series impose a lower bound on the entropy
produced in generating the series. This lower bound is
valid even if we do not have any access or information of
the physical mechanism generating the data. Finally, we
have shown that the bound can be nontrivial, predicting
dissipation even when the data do not exhibit any measur-
able flow. Our techniques could be applied to data from
different sources. In the case of biological systems, they
could help to distinguish between passive and active pro-
cesses, and even to estimate ATP consumption. On the
other side, as in the case of Landauer’s principle, relative
entropy can be used to ascertain the minimal entropy
production associated with a specific behavior, such as

spatiotemporal patterns, excitable systems, etc. This in
turn may influence the design of optimal devices with
functionalities given by these behaviors.
We acknowledge financial support from Grant

MOSAICO (Spanish Government), Becas de la Caixa
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