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We explore driven lattice gases for the existence of an intensive thermodynamic variable which could

determine ‘‘equilibration’’ between two nonequilibrium steady-state systems kept in weak contact. In

simulations, we find that these systems satisfy surprisingly simple thermodynamic laws, such as the zeroth

law and the fluctuation-response relation between the particle-number fluctuation and the corresponding

susceptibility remarkably well. However, at higher densities, small but observable deviations from these

laws occur due to nontrivial contact dynamics and the presence of long-range spatial correlations.
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Among the wide set of classes of nonequilibrium sys-
tems, an important and ubiquitous subclass is that which
has a nonequilibrium steady state (NESS). Unlike in equi-
librium, a system in a NESS has a steady current but its
macroscopic properties, like in equilibrium, are still inde-
pendent of time. In contrast to equilibrium systems, there
is no well founded thermodynamic theory even for this
conceptually simplest class of nonequilibrium systems.
Intensive studies attempting to construct a suitable statis-
tical mechanical framework where macroscopic properties
and thermodynamic states may be characterized in a sim-
ple way have not yet converged to a universal picture [1–5].

At the heart of equilibrium thermodynamics is the zeroth
law which is a consequence of equalization of intensive
thermodynamic variables when two systems are in contact.
For example, when two systems with the same temperature
are allowed to exchange particles with the total number of
particles conserved, the final equilibrium state is deter-
mined by equalization of the chemical potentials of the
two, obtained by minimizing the total free energy. For
NESSs, we ask the same: What happens if two NESSs
are brought into contact?

Recently, there have been attempts to define an intensive
thermodynamic variable for systems such as driven granu-
lar systems [6], static granular assemblies of blocked states
formed by weak driving [7] and a class of exactly solvable
models motivated by inelastic granular collisions [8]. More
generally, there has been a prescription to define such a
variable for systems in NESSs by invoking a hypothesis,
called the asymptotic factorization property, which has
been shown to be satisfied for a class of systems having
short-range spatial correlations [9].

For driven diffusive systems like the paradigmatic sto-
chastic lattice gases [10,11], which have long-range spatial
correlations, the situation is less clear. Previously, moti-
vated by equilibrium thermodynamics which has a rigor-
ous basis in terms of the large-deviation principle (LDP)
[12], a hypothesis of the existence of LDP has been put
forward for these systems [1], but not yet rigorously

established. By operationally defining a pressure and a
chemical potential, a numerical study [13] indicates that
a Maxwell relation is satisfied and there may indeed exist a
large-deviation function analogous to the equilibrium
free energy.
In equilibrium, the existence of an intensive variable

hinges crucially on the local thermodynamic properties
of a system, i.e., if the system is divided into subsystems
large compared to the microscopic scales, the fluctuations
in the individual subsystems are independent of each other
as a consequence of the short-range spatial correlations in
the system. In contrast, the driven systems have generic
long-range spatial correlations [14]. In this situation, it is
not obvious that the system could be divided into indepen-
dent subsystems and intensive variables analogous to those
in equilibrium could be defined.
In this Letter we explore by simulations the equili-

bration between two driven lattice gases upon contact.
Interestingly, we find that, to a very good approximation,
there is an intensive variable, like equilibrium chemical
potential, which determines the final steady state while two
such driven systems are allowed to exchange particles.
Concomitantly, the zeroth law of thermodynamics is sat-
isfied remarkably well. Moreover, a fluctuation-response
relation between the fluctuations in particle-number and
the corresponding susceptibility is also well satisfied.
However, at higher densities, there are small but observ-
able deviations from these simple thermodynamic laws due
to nontrivial contact dynamics and the presence of long-
range spatial correlations.
We consider two systems of volume V1 and V2, con-

nected at a finite set of points ~V1 and ~V2 which are subsets
of V1 and V2 respectively, with ~V1, ~V2 � V1, V2

(see Fig. 1). The two systems can interact and exchange
particles with each other only at the contact. The energy
H of the two systems combined is given by
H¼K1

P
�ðr1Þ�ðr01ÞþK2

P
�ðr2Þ�ðr02Þþ ~K

P
�ð~r1Þ�ð~r2Þ

where sums are over nearest-neighbor sites with r1,
r01 2 V1, ~r1 2 ~V1 and r2, r

0
2 2 V2, ~r2 2 ~V2. A site r can
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be occupied by at most one particle and the occupation
variable �ðrÞ is 1 or 0 if the site is occupied or unoccupied,
respectively. K1, K2 and ~K are the interaction strengths
among particles for system 1 and 2, and at the contact,
respectively. In the simulations, we consider two-
dimensional systems (V ¼ L� L) with periodic bounda-
ries in both directions. We choose the jump rate wðC0jCÞ
from a configuration C to C0 according to the local detailed
balance condition [11]: the jump rate from a site r to
its unoccupied nearest-neighbor r0 obeys wðC0jCÞ ¼
wðCjC0Þ exp½��H þ Eðx0 � xÞ�, where �H ¼ HðC0Þ�
HðCÞ, E is the driving field along the x direction, and x
and x0 are x components of r and r0 (kBT ¼ 1, kB the
Boltzmann constant, T temperature).

We choose E ¼ E1 when r, r0 2 V1, E ¼ E2 when r,
r0 2 V2 and E ¼ 0 otherwise. There is no driving field
along the bonds connecting the two systems. We choose
K1, K2 > 0 and E1, E2 so that systems are in the dis-
ordered (fluid) phase [10]. For E1 ¼ E2 ¼ 0, the com-
bined system has the equilibrium Boltzmann distribution
� exp½�HðCÞ�. For E1, E2 � 0, there are currents in the
steady states and the steady-state distribution is, in general,
unknown. Driven bilayer systems were studied previously
[15] where particles jump from one layer to the other at any
site as opposed to the case here with possibility of particle
transfer only at a small contact area.

We first report an a priori surprising observation sug-
gesting an effective zeroth law for systems in NESS. When
two systems are brought into contact, after relaxation in-
volving exchange of particles, in the final ‘‘equilibrated’’
steady state there is no net current across the contact
region. This property allows an operational definition of
a chemical potential of a NESS as follows. A driven system
is brought into contact with an equilibrium system EQ
whose chemical potential � is known as a function of
density. In the final steady state, the chemical potential �
of EQ is assigned to the driven system. We choose a system
of noninteracting hard-core particles as EQ with density
being n0 and � ¼ �ð@s=@n0Þ ¼ ln½n0=ð1� n0Þ� with s ¼
�½n0 lnn0 þ ð1� n0Þ lnð1� n0Þ� the equilibrium entropy
per lattice site. By varying n0 of EQ in contact with a NESS
in consideration, one can get the density versus chemical
potential curve for the NESS as shown in Fig. 2 (bottom
panel). The surprising observation is that, if two NESSs,

NESS1 and NESS2 (chosen such that they have operation-
ally the same � but different densities), are brought to-
gether, the respective densities do not change upon contact.
Moreover, if we bring together two NESSs with the same
density but different �, particles will flow from the higher
to lower chemical potential till the respective densities
correspond to the same � as indicated with arrows in
Fig. 2 (bottom panel).
Thus, if two systems are separately equilibrated with a

common system with a fixed density, they will also be
equilibrated amongst themselves. Consider, e.g., two sys-
tems NESS1 and NESS2 kept in contact and having two
equilibrated density profiles, with density n1 and density
n2, respectively. Then, a third system EQ1 is separately
brought into contact with NESS2 and the density of EQ1 is
tuned to n3 such that NESS2 keeps its density n2 un-
changed in the equilibrated state. Now, if NESS1 with
density n1 and EQ1 with density n3 are brought into con-
tact, the two density profiles remain almost unchanged,
confirming the zeroth law (see Fig. 2, top panel and the
explanations in the caption).
These systems are indeed far away from equilibrium

since the numerical values of the currents in NESS1 and
NESS2 in the bottom panel of Fig. 2 are approximately 2=3
and 1=3 of the respective maximum currents. Likewise, in

E2E1

System 1 System 2

V1 V
~

2
~

FIG. 1 (color online). A schematic diagram of two non-
equilibrium steady states with contact region ~V1 and ~V2.

FIG. 2 (color online). Bottom panel: The plot of density n vs
chemical potential � for two 120� 120 systems, NESS1 with
K ¼ 1, E ¼ 2 (circles) and NESS2 with K ¼ E ¼ 2 (triangles)
with ~K ¼ 0. Arrows indicate how the density changes if NESS1
and NESS2 with the same initial density n ¼ 0:30 (denoted by
middle horizontal line) are brought into contact, reaching re-
spective final densities n ’ 0:33 (denoted by top horizontal line)
and n ’ 0:27 (denoted by bottom horizontal line) with equal
chemical potential � ’ 0:36. Top panel: Numerical experiments
to test zeroth law ( ~K ¼ 0)—(1) NESS1 (K ¼ 4, E ¼ 6, L ¼
120) with density n1 (bottom red profile) equilibrated with
NESS2 (K ¼ E ¼ 2, L ¼ 110) with density n2 (middle blue
profile), (2) NESS2 with density n2 (middle magenta profile)
equilibrated with EQ1 (K ¼ 1, E ¼ 0, L ¼ 100) with density n3
(top grey profile), and (3) NESS1 with density n01 (bottom green

profile) equilibrated with EQ1 with density n03 (top black profile)

where n01 � n1 and n03 � n3.
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the top panel, NESS2 with density � 0:5 has a homoge-
neous disordered state in contrast to the corresponding
equilibrium system, with K ¼ 2, E ¼ 0 and the same
density, which has a symmetry-broken phase with different
sublattice densities [10].

The chemical potential of a system may also be mea-
sured by keeping it in contact with any other equilibrium
system, not necessarily a noninteracting hard-core one. In
Fig. 3, we have plotted densities versus chemical potentials
for a system separately in contact with systems with differ-
ent contact area as well as nonzero interaction strength ~K,
the result being in good agreement with the zeroth law.

The existence of a zeroth law would be a consequence of
a putative large-deviation principle (LDP) [12]. To eluci-
date it briefly, let us consider two systems which can
exchange particles such that N1 þ N2 ¼ N ¼ const, N1,
N2 the number of particles in systems 1 and 2, respectively.
Assuming that the LDP holds, the probability PðN1; N2Þ of
a large deviation in N1, N2 is given by PðN1; N2Þ �
½eV1s1ðn1ÞeV2s2ðn2Þ�e�SðNÞ in the limit of N1, N2, V1, V2 �
1, where n1 ¼ N1=V1 and n2 ¼ N2=V2 being finite and
exp½�SðNÞ� the normalization constant (‘‘�’’ implying
equality in terms of logarithm). The functions s1ðn1Þ,
s2ðn2Þ are called the large-deviation functions (LDF). In
writing so, the correlation between systems has been ne-
glected as a boundary-effect in the limit of large volume.
This assumption of a product measure of PðN1; N2Þ essen-
tially implies that the LDFs s1ðn1Þ and s2ðn2Þ are local
function of the respective densities. The macroscopic state,

under the constraint N1 þ N2 ¼ const, is determined by
maximizing lnPðN1; N2Þ where the chemical potentials
�1 ¼ �@s1=@n1 and �2 ¼ �@s2=@n2 being equal in the
final steady-state. Clearly the consequence of the LDP is a
zeroth law as presented in Fig. 2. Another interesting
consequence of a putative LDP would be a relation be-
tween the susceptibility and the fluctuation in particle-
number of the system 1 in a NESS when it is in contact
with the system 2 being a large reservoir characterized by a
chemical potential �. Then, one gets the following
fluctuation-response relation as in equilibrium,

� � @hN1i
@�

¼ ðhN2
1i � hN1i2Þ � �2

N1
: (1)

We first proceed to test this relation for a NESS in contact
with an equilibrium reservoir with density n0, consisting of
noninteracting hard-core particles with� ¼ �ð@s=@n0Þ ¼
ln½n0=ð1� n0Þ�. For better numerical accuracy, we check
the integrated version of Eq. (1) by defining the integrated
susceptibility I�ð�Þ � R

�
�0
ð@hN1i=@�Þd� ¼ hN1ð�Þi �

hN1ð�0Þi and the integrated fluctuation I�ð�Þ �
R
�
�0
ð�2

N1
Þd�.

We take a 20� 20 nonequilibrium system NESS1 with
K ¼ 1, E ¼ 2 and keep it in contact with a 100� 100
equilibrium reservoir of noninteracting hard-core particles
(K ¼ E ¼ 0), called RES1. Then we vary the chemical
potential � (or, equivalently, the density n0) of RES1 in
small steps from an initial value �0 ¼ �3:5 and calculate
�2

N1
for each value of �. We repeat this procedure by

keeping NESS1 separately in contact with various other
reservoirs of size 100� 100whose chemical potentials can
be measured by keeping these reservoirs in contact with the
RES1. In Fig. 4, we plot I�ð�Þ and I�ð�Þ as a function of

�. Provided that the Eq. (1) is valid, all the curves should
fall on each other. Up to chemical potential � ’ 1, we
observe a quite good collapse within the numerical accu-
racy. We also consider two different systems, NESS1 with
K ¼ 1, E ¼ 2 and NESS2 with K ¼ E ¼ 2, separately in
contact with RES1. In the inset of Fig. 4, we plot I�ð�Þ and
I�ð�Þ which are in good agreement with the fluctuation
relation in Eq. (1).
At higher chemical potentials, there are observable de-

viations from this simple thermodynamic behavior. In
Fig. 4, the I� vs � and I� vs � curves do not fall on

each other for � * 1. Correspondingly, in this density
regime, the zeroth law does not hold strictly as seen in
Fig. 3. However, these violations are not simply due to a
finite-size effect and persist for much larger system sizes.
To investigate the possible reasons for the violations, we
also study the behavior of spatial density correlation func-
tions for various densities. Unlike equilibrium systems, the
nonequilibrium systems, due to the presence of a driving
field, are expected to have generic long-range spatial cor-
relations [10,14,16,17], arising because the structure factor

0.2

0.4

-4 -3 -2 -1  0  1  2
µ

0.2

0.4

0.2

0.4

FIG. 3 (color online). Density n vs chemical potential � is
plotted for a 120� 120 NESS1 (K ¼ 1, E ¼ 2) for the following
cases. Bottom panel: NESS1 separately in contact with 120�
120 systems with EQ1 (K ¼ E ¼ 0, red) and EQ2 (K ¼ 1,
E ¼ 0, blue). Middle panel: NESS1 separately in contact with
EQ1 (blue) and EQ2 (black) with 4� 1 contact area. Top panel:
NESS1 separately in contact with EQ1 (blue) and EQ2 (black) for
nonzero interaction strength ~K ¼ 1. In middle and top panel, n
vs � plot is compared with that obtained for NESS1 in contact
with EQ1 with 2� 2 contact area.
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Sðqx; qyÞ, i.e., the Fourier transform of the spatial density

correlation function, becomes singular when qx, qy ! 0

with R ¼ ½limqy!0Sð0; qyÞ�=½limqx!0Sðqx; 0Þ� � 1. This

gives rise to the long-range spatial correlations decaying
as A=rd with distance r in d dimension with the amplitude
A / ðR� 1Þ [10]. In Fig. 5, we have plotted the ratio R
versus density n and the structure factors Sðqx; 0Þ and
Sð0; qyÞ for two different densities in inset of Fig. 5 for a

NESS with K ¼ 1, E ¼ 2, L ¼ 120. The ratio R deviates
from 1 more strongly with increasing density, indicating an
increase of long-range correlations which manifest them-
selves through the nonlocal effect of the contact. In Figs. 3
and 4, collapse of various n vs � and I� vs � (or I� vs �)

curves for different contact dynamics are not very good for
� * 1. Clearly, the effect of the contact is felt throughout
the systems and this nontrivially changes the correspond-
ing thermodynamic properties. Therefore, the breakdown
of an exact equilibriumlike structure or, in other words the
breakdown of the product-measure assumption in the LDP,
indicates the important role of the contact dynamics [9]
and the long-range correlations in a driven system.
In summary, our numerical study of coupled driven

lattice gases has revealed a surprisingly simple thermody-
namic structure with an effective zeroth law like behavior
concerning exchange of particles and the corresponding
fluctuation-response relation. This thermodynamic struc-
ture is not exact since there are small but observable
deviations at higher densities. Their physical origin is
rooted in the nontrivial contact dynamics and the presence
of long-range spatial correlations which invalidate the
asymptotic factorization property. As an open question, it
would be interesting to see whether systems with more
than one conserved quantity (e.g., models with two spe-
cies) exhibit a similar behavior. Finally our study prompts
the question whether such an approximate thermodynamic
structure is typical just for driven lattice gases or generi-
cally occurs in other coupled NESSs with long-range
correlations as well.
We thank J. Krug and R.K. P. Zia for discussions.
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FIG. 4 (color online). Integrated susceptibilities I� (squares)
and fluctuations I� (circles) vs chemical potential � are plotted
for a 20� 20 NESS1 with K ¼ 1, E ¼ 2, separately in contact
with five different 100� 100 reservoirs: (1) K ¼ E ¼ 0 (red),
(2) K ¼ 1, E ¼ 2 (green), (3) K ¼ 1, E ¼ 4 (blue), (4) K ¼ 2,
E ¼ 4 (sky-blue), (5) K ¼ 2, E ¼ 6 (magenta). Inset: Same
quantities are plotted for two different 20� 20 systems,
NESS1 with K ¼ 1, E ¼ 2 (blue) and NESS2 K ¼ E ¼ 2
(red), in contact with a reservoir (K ¼ E ¼ 0, L ¼ 100).
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FIG. 5 (color online). The ratio R ¼ ½limqy!0Sð0; qyÞ�=
½limqx!0Sðqx; 0Þ� vs density n is plotted for a NESS with K ¼
1, E ¼ 2, L ¼ 120. Inset: The structure factors Sðqx; 0Þ (open
points) and Sð0; qyÞ (filled points) vs qx and qy respectively are

plotted for densities n ¼ 0:1 (red) and n ¼ 0:5 (blue).
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