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The set of Bell-diagonal states for two qubits can be depicted as a tetrahedron in three dimensions. We

consider the level surfaces of entanglement and quantum discord for Bell-diagonal states. This provides a

complete picture of the structure of entanglement and discord for this simple case and, in particular, of

their nonanalytic behavior under decoherence. The pictorial approach also indicates how to show that

discord is neither convex nor concave.
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Maintenance of quantum coherence is clearly important
for quantum-information-processing protocols. Noise and
decoherence, by turning pure states into mixed states,
generally destroy quantum coherence. Efficient represen-
tation of quantum information requires that a quantum-
information-processing system be composed of parts [1].
For multipartite systems, quantum coherence is related to
nonclassical correlations between the parts.

One kind of nonclassical correlation is entanglement [2].
A pure quantum state is unentangled if it is a product of
pure states for each part. A mixed state is unentangled
(separable) if it can be written as an ensemble of such
product states. Entanglement is the crucial resource
for such quantum-information-processing protocols as
quantum key distribution, teleportation, and superdense
coding [2].

Operational measures of entanglement are notoriously
difficult to calculate for mixed states; even the boundary
between separability and entanglement is difficult to char-
acterize. One can say, however, that the set of separable
states is a convex set, is invariant under local unitary
operations, and has dimension as large as the space of
mixed states [2].

Separable states have nonzero measure in the space of
all states [3]. In a decoherence process that involves decay
to a separable equilibrium state that does not lie on the
boundary between separability and entanglement, the de-
cohering state will cross that boundary before reaching the
equilibrium state. This phenomenon, dubbed ‘‘sudden
death of entanglement’’ [4,5], is the generic expectation
in view of the geometry of separable states.

Separable states can have nonclassical correlations even
though they are unentangled. A state with only classical
correlations, often called a classical state, is one that is
diagonal in a product basis, for then the correlations are
described by a joint probability distribution for classical
variables of the parts. These purely classical states are a
set of measure zero, as is suggested by the fact that any
classical state can be perturbed infinitesimally to become
nonclassical by making two of the eigenvectors infinitesi-
mally entangled and is proved rigorously in [6].

A variety of measures have been proposed to quantify
nonclassical correlations for bipartite systems [7–9], in
ways that can be nonzero for separable, but nonclassical
states. Nonclassical, but perhaps separable correlations
have been related to exponential speedups in the ‘‘power-
of-one-qubit’’ model [10] of mixed-state quantum compu-
tation [11], but the relation remains tenuous [12].
One can use decoherence mechanisms to explore the

nooks and crannies of nonclassical-correlation measures.
There is no sudden death [6], as is suggested by the absence
of open sets of classical states, but the nonanalyticity of
nonclassical measures points to the possibility of sudden
changes in derivatives. Investigation of the behavior of
nonclassical measures under decoherence has begun
[5,13–15], with a focus on the action of decoherence within
the class of two-qubit states that are diagonal in the Bell
basis. This focus is motivated by the fact that entanglement
measures and nonclassical-correlation measures can be
calculated explicitly for the Bell-diagonal states, thus al-
lowing one to determine how these measures change under
decoherence.
The Bell-diagonal states are a three-parameter set,

whose geometry, including the subsets of separable and
classical subsets, can be depicted in three dimensions
[2,16]. Level surfaces of entanglement and nonclassical
measures can be plotted directly on this three-dimensional
geometry. The result is a complete picture, for this simple
case, of the structure of entanglement and nonclassicality.
We suggest that it is more illuminating to use this picture to
explain how measures of entanglement and nonclassicality
change along the one-dimensional trajectories traced out
by decohering states, rather than the other way around.
Hence we review and expand the pictorial approach here.
The Bell-diagonal states of two qubits, A and B, have

density operators of the form

�AB ¼ 1

4

�
I þ X3

j¼1

cj�
A
j � �B

j

�
¼ X

a;b

�abj�abih�abj; (1)

where the �j’s are Pauli operators. The eigenstates are the

four Bell states j�abi � ðj0; bi þ ð�1Þaj1; 1 � biÞ= ffiffiffi
2

p
,

with eigenvalues
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�ab ¼ 1
4½1þ ð�1Þac1 � ð�1Þaþbc2 þ ð�1Þbc3�: (2)

Any two-qubit state satisfying h�A
j i ¼ 0 ¼ h�B

j i, i.e., hav-
ing maximally mixed marginal density operators �A ¼
I=2 ¼ �B, can be brought to Bell-diagonal form by using
local unitary operations on the two qubits to diagonalize
the correlation matrix h�A

j � �B
k i.

A Bell-diagonal state is specified by a 3-tuple (c1, c2,
c3). The density operator �AB must be a positive operator,
i.e., �ab � 0; the resulting region of Bell-diagonal states is
the state tetrahedron T in Fig. 1. Separable Bell-diagonal
states are those with positive partial transpose [2]. Partial
transposition changes the sign of c2, so operators with
positive partial transpose occupy the reflection of T
through the plane c2 ¼ 0; the region of separable Bell-
diagonal states is the intersection of the two tetrahedra,
which is the octahedron O of Fig. 1 [16].

The entanglement of formation E [2,17] is a monotoni-
cally increasing function of Wootters’s concurrence
C [17], which for Bell-diagonal states is given by C ¼
maxð0; 2�max � 1Þ, where �max ¼ max�ab. The concur-
rence and the entanglement of formation are convex
functions on T . They are zero for the separable states in
the octahedron O. In each of the four entangled regions
outside O, C and E are constant on planes parallel to the
bounding face of O and increase as one moves outward
through these planes toward the Bell-state vertex.

Quantum discord was introduced by Ollivier and Zurek
[7]. We restrict attention to it because of its prominence
among measures of nonclassical correlations and because
it has been a focus of recent work on decoherence and
nonclassical correlations [5,13–15].

To define quantum discord, one starts with the quantum
mutual information, I ¼ Sð�AÞ þ Sð�BÞ � Sð�ABÞ ¼
Sð�BÞ � SðBjAÞ, where Sð�Þ ¼ �trð�log2�Þ is the
von Neumann entropy of � and SðBjAÞ ¼ Sð�ABÞ �
Sð�AÞ is a conditional quantum entropy. The quantum
mutual information is regarded as quantifying the total
correlations in the joint state �AB.
The quantum mutual information of Bell-diagonal

states,

I ¼ 2� Sð�ABÞ ¼
X
a;b

�ablog2ð4�abÞ; (3)

is a convex function onT . It has smooth level surfaces that
bulge outward toward the vertices of T .
The next step is to quantify purely classical correlations

in terms of information from measurements. One imagines
measuring on A a positive-operator-valued measure
(POVM) consisting of rank-one POVM elements Ek ¼
Dqkjkihkj [18], where D is the dimension of A and the qk
make up a normalized probability distribution. The proba-
bility to get result k is pk ¼ Dqkhkj�Ajki, and the post-
measurement state of B is �Bjk ¼ hkj�ABjki=hkj�Ajki.
Minimizing the average entropy of B, given result k, over
measurements on A, yields a classical conditional entropy

~SðBjAÞ � min
fEkg

X
k

pkSð�BjkÞ; (4)

minimizing chooses the measurement of A that extracts as
much information as possible about B. The corresponding

mutual-information-like quantity C ¼ Sð�BÞ � ~SðBjAÞ is
the measure of classical correlations.
For Bell-diagonal states, we have

C ¼ 1�H2

�
1þ c

2

�

¼ 1þ c

2
log2ð1þ cÞ þ 1� c

2
log2ð1� cÞ; (5)

where H2ðpÞ ¼ �plog2p� ð1� pÞlog2ð1� pÞ is the bi-
nary entropy and c ¼ maxjcjj [19,20]. This C, a convex

function on T , is constant on the surfaces of cubes (or the
portion of such a cube in T ) centered at the origin of
Fig. 1—this introduces nonanalyticity—and C increases
monotonically with the size of the cube.
Discord is defined as the difference of I and C,

D ¼ I � C ¼ ~SðBjAÞ � SðBjAÞ; (6)

thus capturing a notion of nonclassical correlations. Since
C is generally asymmetric between A and B, so also is the
discord; this means, in particular, that discord, as defined,
vanishes if and only if �AB is diagonal in a conditional
product basis jeAj i � jfBjki, rather than only in a product

basis jeAj i � jfBk i. Bell-diagonal states being symmetric

between A and B, however, discord is zero only for clas-
sical states, which lie on the Cartesian axes in Fig. 1 [12].

FIG. 1 (color). Geometry of Bell-diagonal states. The tetrahe-
dron T is the set of valid Bell-diagonal states. The Bell states
j�abi sit at the four vertices, the extreme points of T . The green
octahedron O, specified by jc1j þ jc2j þ jc3j � 1 (�ab � 1=2),
is the set of separable Bell-diagonal states. There are four
entangled regions outside O, one for each vertex of T , in
each of which the biggest eigenvalue �ab is the one associated
with the Bell state at the vertex. Classical states, i.e., those
diagonal in a product basis, lie on the Cartesian axes.
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Figure 2 plots level surfaces of discord for Bell-diagonal
states. From these plots, it is clear that discord is quite
different from entanglement of formation, quantum mutual
information, and the measure of classical correlations.
Whereas E, I , and C generally increase outward from the
origin, D increases away from the Cartesian axes, captur-
ing an entropic notion of distance from classical states
[9,12]. In particular, as one moves outward along one of
the constant-discord tubes of Fig. 2, the classical correla-
tions and the total correlations of the quantum
mutual information increase, but their difference, the
nonclassical correlations as measured by discord, remains
constant. At the vertices ofO, I ¼ C ¼ 1 andD ¼ E ¼ 0.
At the Bell-state vertices of T , I ¼ 2 and C ¼ D ¼
E ¼ 1, this being the maximum value of discord for two
qubits. In addition, E, I , and C are all convex, whereas
discord is neither concave nor convex, as is evident from
the plots in Fig. 2: one can mix two positive-discord states
to get a zero-discord classical state, and one can mix two
zero-discord classical states on different axes to get a
positive-discord state [21].

Mazzola, Piilo, and Maniscalco [15] recently investi-
gated the dynamics of classical and nonclassical correla-
tions, as measured by discord, for two qubits under
decoherence processes that preserve Bell-diagonal states.
In particular, they considered independent phase-flip chan-
nels for the two qubits. The phase flips are implemented
mathematically by random applications of �z operators to
the qubits. This decoherence process leaves c3 unchanged,
but flips the signs of c1 and c2 randomly, leading to
exponential decay of c1 and c2 at the same rate. Mazzola
and collaborators found that for the initial conditions they
considered, the entanglement of formation decays to zero
in a finite time—sudden death of entanglement [4]—but
that the discord remains constant for a finite time and then
decays, reaching zero at infinite time. This situation is
depicted in terms of the surfaces of constant discord in
Fig. 3. The decohering-state trajectory is a straight line that
runs along a tube of constant discord, until it encounters an
intersecting tube, after which the discord decreases to zero
when the state becomes fully classical.

This behavior is generic for flip channels and initial
conditions on edges of the state tetrahedron. We focus
here on the phase-flip channel with initial conditions in
the ðþ;�;þÞ octant, but analogous considerations apply to
the other flip channels (bit and bit phase) and to initial
conditions on the other edges of T . Consider then initial
conditions anywhere along the edge of T in this octant:
c1ð0Þ ¼ 1 and 0 � �c2ð0Þ ¼ c3ð0Þ � 1. The trajectory
under phase flips is a straight line c3 ¼ c3ð0Þ ¼ �c2=c1.
Along this straight line, the eigenvalues �ab factor into
products of probabilities, ð1� c1Þ=2 and ð1� c3Þ=2, thus
making Sð�ABÞ the entropy of two independent binary
random variables with these probabilities. This yields a
quantum mutual information I ¼ 2�H2½ð1þ c3Þ=2� �

FIG. 2 (color). Surfaces of constant discord, (a) D ¼ 0:03,
(b) D ¼ 0:15, (c) D ¼ 0:35. The level surfaces consist of three
intersecting ‘‘tubes’’ running along the three Cartesian axes. The
tubes are cut off by the state tetrahedron T at their ends, and
they are squeezed and twisted so that at their ends they align with
an edge of T . As discord decreases, the tubes collapse to the
Cartesian axes [12]. As discord increases, the tube structure is
obscured, as in (c): the main body of each tube is cut off by T ;
all that remain are the tips, which reach out toward the Bell-state
vertices.
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H2½ð1þ c1Þ=2�. Furthermore, along the trajectory c ¼
maxðc1; c3Þ. The result is that the trajectory initially runs
along a tube of constant discord

D ¼ 1�H2

�
1þ c3

2

�
; (7)

for c1 � c3. When c1 ¼ c3, the trajectory encounters an-
other tube, after which, for c1 � c3, the discord decreases
monotonically as D ¼ 1�H2½ð1þ c1Þ=2� as c1 de-
creases. Meanwhile, the entanglement of formation de-
creases monotonically from its initial value to a sudden
death at c1 ¼ ð1� c3Þ=ð1þ c3Þ.

The situation investigated in [15] is surely interesting:
under decoherence, nonclassical correlations remain con-
stant for a finite time interval. This situation is, however, a
special one, as can be seen from the surfaces of constant
discord; the trajectories considered here are the only
straight lines in parameter space that stay on a surface of
constant discord. Indeed, the pictorial approach can pro-
vide a complete understanding of how entanglement and
nonclassicality change under decoherence within the set of
Bell-diagonal states.
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FIG. 3 (color). Trajectory (red) of a Bell-diagonal state under
random phase flips of the two qubits; initial conditions are
c1ð0Þ ¼ 1, �c2ð0Þ ¼ c3ð0Þ ¼ 0:3. The trajectory is the straight
line c3 ¼ c3ð0Þ ¼ 0:3 ¼ �c2=c1. For clarity, only the ðþ;�;þÞ
octant is shown. A constant-discord surface is plotted for the
discord value of the initial state. Faces of the yellow state
tetrahedron T and the green separable octahedron O are also
shown. The straight line trajectory proceeds along a tube of
constant discord till it encounters the vertical tube at c1 ¼ 0:3,
after which discord decreases monotonically to zero when the
trajectory reaches the c3 axis. Entanglement of formation de-
creases monotonically to zero when the trajectory enters O at
c1 ¼ 0:7=1:3 ¼ 0:54.
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