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Dynamic Simulations of Multicomponent Lipid Membranes over Long Length and Time Scales
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We present a stochastic phase-field model for multicomponent lipid bilayers that explicitly accounts for
the quasi-two-dimensional hydrodynamic environment unique to a thin fluid membrane immersed in
aqueous solution. Dynamics over a wide range of length scales (from nanometers to microns) for durations
up to seconds and longer are readily accessed and provide a direct comparison to fluorescence microscopy
measurements in ternary lipid-cholesterol mixtures. Simulations of phase separation kinetics agree with
experiment and elucidate the importance of hydrodynamics in the coarsening process.
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Multicomponent lipid bilayer membranes are of univer-
sal biological importance and are increasingly viewed
as fundamentally interesting soft matter systems [1-3].
Ternary mixtures of saturated and unsaturated lipids and
cholesterol have become a standard experimental model to
study the dynamics of inhomogeneous membranes under
controlled laboratory conditions [4,5]. These dynamics
include diffusion of lipid domains [6], “flickering” fluctu-
ations of domain boundaries [7], and phase separation
kinetics [8]. Theories for domain diffusion and flickering
in certain regimes have helped to illuminate the relevant
physics [9,10], which crucially depends on the “quasi-two-
dimensional” (quasi-2D) [11] hydrodynamic environment
of a viscous fluid membrane within bulk solvent [12,13].

Particle-based simulations have been used to study gen-
eral features related to phase separation dynamics in
bilayer systems [14—16], but it remains difficult to directly
compare simulation to experiments with vesicles tens of
microns in diameter and observation times of up to
minutes. At a coarser level, phase-field representations of
inhomogeneous membranes have been introduced [17-19],
but these studies neglect hydrodynamic effects and/or ther-
mal fluctuations, again making detailed comparison to
experimental dynamics impossible. This Letter presents a
simulation scheme that combines quasi-2D hydrodynamics
and thermal fluctuations with the capability to probe ex-
perimentally relevant length and time scales. Compelling
agreement with both theory and experiment is obtained.

Our focus is on experimentally observable dynamics,
not first-principles prediction of detailed properties.
Accordingly, we adopt a standard Landau-Ginzburg free
energy functional for binary mixtures [20,21]:

F— fdzr[—gdﬂ Hlhgh s %|V¢|2], )

where r, u, y > 0. Equation (1) may be interpreted as a
phenomenological description of the observed two-phase
coexistence in ternary lipid-cholesterol systems. However,
to facilitate comparison with experiment, we assume tight
stoichiometric complexation between cholesterol and the
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saturated lipid [22] and identify &(r) = x(r)unsaturaced —
X(F)complex as the local difference in the mole fraction (y)
between lipid species. Though limited to mixtures with a
1:1 stoichometry between saturated lipids and cholesterol,
this picture has the advantage of simplicity. Only a single
composition field is required, and the three parameters
appearing in F are readily related to measurable experi-
mental properties [20]: the line tension between phases,

o = (2v2)/3uy'?r*2, interface width ¢ = 1/y/r, and
equilibrium phase compositions ¢, = *=+/r/u.

We require the dynamics of ¢ to conserve lipid concen-
trations, hydrodynamically couple points on the membrane,
and have thermal fluctuations. Model H dynamics repre-
sents the generic long-wavelength low-frequency picture to
incorporate these requirements [21]. In the overdamped
“creeping-flow” limit for experimental conditions (low
Reynolds number Re < 1073), model H reduces to [23,24]

(8, + v+ V)p(r, 1) = MV2 +6(r, 1)

F
So(r, 1)
vy(r, ) = [ PPT,(r — r/)[g—gv;¢ + gj]. @)

Though typically applied to pure three-dimensional (3D)
or two-dimensional (2D) geometries, we use Eq. (2) for
the quasi-2D fluid membrane geometry first introduced
by Saffman and Delbriick [12], which considers the mem-
brane to be a thin, flat fluid surface with surface viscosity
M, surrounded by a bulk fluid with viscosity 1. In this
case v = (v,, v,) is the in-plane membrane velocity field,
M is a transport coefficient related to the collective diffu-
sion coefficient for lipids within the bilayer (D) via
M = D,/2r [14,21], and T;;(r) is the Green’s function
for in-plane velocity of the membrane [11,13]. In a conven-
tional 3D fluid geometry, 7;;(r) would be the Oseen tensor
[25]; its form for the quasi-2D membrane geometry in-
cludes the effect of flow both within the membrane and in
the bulk solvent. There is no simple closed-form expression
for T;;(r), but its Fourier transform is [11,13]
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where Lgp = 2’77’]’} is the Saffman-Delbriick length scale. The

Gaussian white thermal noise terms 6(r, 7) and £;(r/, 7) are
distributed with variances set by the fluctuation-dissipation
theorem [26]. In Eq. (2) and henceforth, the Einstein sum-
mation convention is assumed.

In typical model membrane systems, 7,, is in the range
(0.1-10) X 107° surface poise (Pcm, or g/s) [6,27,28],
corresponding to Saffman-Delbriick lengths Lgp ~ 0.1-10
microns. Equation (3) exhibits the characteristic scaling
(1/r in real space) associated with the usual 3D Oseen
tensor for ¢ << Lg;} and reduces exactly to the 2D analog to
the Oseen tensor for g > LS_D1 [11]. However, fluorescence
microscopy experiments probe wavelengths comparable to
Lgp, and it is critical to use the full expression in compari-
son to these experiments.

Koga and Kawasaki [23] suggested the use of fast Fourier
transforms as an efficient way to numerically evolve zero-
temperature overdamped model H dynamics. We have
extended their approach to include stochastic thermal forces
and the quasi-2D hydrodynamics discussed above, evolving
Eq. (2) in Fourier space. Our evolution uses a Stratonovich
scheme [29] with semi-implicit terms similar to those used
for the deterministic Cahn-Hilliard equation [30]. This
simulation methodology may be viewed as an extension
of traditional “Brownian dynamics with hydrodynamic
interactions” [31] to composition dynamics within a flat
quasi-2D membrane environment. Details of the numerical
scheme are available as supplementary material [32].

The translational diffusion of circular lipid domains
presents an ideal test to assess the validity of the simulation
method. Theoretical results based upon the quasi-2D hydro
dynamics underlying our approach have been derived
[10,12] and confirmed experimentally [6,28,33]. These
results predict D, = (kzT/47n,,) F(a/Lgp) for the diffu-
sion coefficient of a domain of radius a. The function F
represents the solution to an integral equation [10] but is
well approximated by a closed-form empirical fit described
in Ref. [28]. Choosing initial conditions to reflect a single
circular domain and thermodynamic parameters that guar-
antee the domain remains nearly circular (high o, low T),
we track the domain’s position over time and infer D,
via its mean square displacement. The results collapse
onto F(a/Lgp) (all of a, 1,,, and n, were independently
varied) over a wide range of a/Lgp ratios, completely
spanning the crossover between Saffman-Delbriick
diffusion D, ~ In(Lgp/a) in the limit of small domains
and Stokes-Einstein-like diffusion D, ~ 1/a in the limit of
large domains (Fig. 1).

In experimental membrane systems, line tensions are
seldom high enough to fully suppress shape fluctuations
of lipid domains. Though these fluctuations have minimal
impact on translational diffusion, the fluctuations them-
selves may be analyzed [7] and provide a further test of
our simulation methods. Evolving an initially circular

domain by Eq. (2), we found, in qualitative agreement
with Ref. [34], that domains with small line tensions
~0.1-0.2 pN are not thermodynamically stable at tempera-
tures ~20 °C and area fractions ~0.03-0.1; the domain
radii shrink over time in favor of a more homogeneous
distribution through the simulation box (Fig. 2). However,
this homogeneous phase does not appear to be composed
of ““an ensemble of small domains’ [34]; the composition is
rapidly fluctuating everywhere, without any clearly defined
domain boundaries. This instability depends not only on
line tension, but also on the lipid composition of the mem-
brane; for 1:1:1 mixtures (area fraction 50%) with similar
physical properties, micron-scale phase separation is ob-
served both numerically and experimentally (Fig. 3).

At higher line tensions, domains under similar thermo-
dynamic conditions are stable and we have simulated the
dynamic fluctuations of these systems (Fig. 2). We use the
image analysis techniques of Ref. [7], tracing the boundary
of the domain and expanding it into quasicircular modes,
r(0,1) = R,[1 + u,(1) + 1%, .ou,(1)e™]. For small devi-
ations u,,, the domain shape is expected to behave in accord
with an effective Hamiltonian H = oL =~ 728 %" _(n? —
Dlu,|> (L is the domain perimeter); thus {|u,|?) =
2kyT/omRy(n> — 1) is expected via equipartition.
Experimentally, this relation is used to determine line
tensions [7]. We observe that our numerical experiments
yield the equipartition result with the expected o =
(2+/2)/3uy!/2r3/% (Fig. 2, inset). The linear dynamics of
these modes depend on the line tension as well as the
viscosities of both the membrane and the surrounding fluid;
(u,(Du_,(0)) = {|u,|*)e~"/7. Stone and McConnell found
these relaxation times neglecting the membrane viscosity
(valid for length scales R/n > Lgp), and Mann et al.
calculated them neglecting the bulk fluid (valid for
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FIG. 1 (color online). Translational diffusion coefficients ob-
tained by tracking simulated domain motion, compared with
Saffman-Delbriick-Hughes-Pailthorpe-White theory (using the
interpolation of Ref. [28]). Dy = kT /4m,,. Error bars are on
the order of marker size. Line tensions and temperatures were
chosen to ensure domains remained circular over the course of the
simulations; box sizes range from 10 to 40 um (N = 256-1024),
chosen to eliminate effects from periodic boundary conditions.
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R/n < Lgp) [9,35]. In our simulations, we see exponential
relaxation over all modes u,,(r) with 7, plotted in Fig. 2. We
note that for large n modes, the Mann theory is appropriate,
as expected, but there are deviations from the Stone-
McConnell result even at low n since Lgp = 0.5 um is
comparable to the size of the domain. The simulations are
in excellent agreement with a recent generalization to the
Stone-McConnell theory [36] that includes the effects
of both 7,, and 7. Expressions for 7, in all limits are
presented in Ref. [36].

The modeling described herein displays its true potential
when applied to problems that are not easily explained with
analytical theory. Using identical methodology to the dif-
fusion and fluctuation studies, but employing a homoge-
neous initial condition, allows the study of phase separation
kinetics in ternary lipid-cholesterol model systems. Our
simulations are motivated by the experiments of Veatch
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FIG. 2 (color online). Top: Simulated evolution of flickering
domains with o = 0.8 and 0.1 pN. The ¢ = 0.1 pN domain
shrinks, but the o = 0.8 pN domain is stable. Both have initial
radius R = 2.0 um, 7,, = 1 X 1076 surface poise, & = 40 nm,
¢o =04, Dy =z2-=32%10"" em?/s, T=21°C, and
1y = 0.01 P. These are typical values for ternary domains near
20 °C, with a viscosity in the middle of the commonly accepted
range (see text). The box size for the simulation is 20 um X
20 wm, N = 512, and the time step Atis 5 us. (Scale bar: 2 pwm.
Only the region immediately surrounding the domain is dis-
played.) Bottom: Relaxation times for mode n for o = 0.8 pN
(see text). Inset: Thermal variance in amplitude for mode n. The
theoretical prediction (black line) is the equipartition result de-
scribed in the text. There is no fitting involved for either the main
figure or the inset. Theoretical predictions follow immediately
from the parameters input to the model and demonstrate the
robustness of the simulation scheme.

and Keller [8] on roughly 1:1:1 mixtures of dioleoyl phos-
phatidylcholine (DOPC), dipalmitoyl phosphatidylcholine
(DPPC), and cholesterol (Chol). Taking care to choose
parameters consistent with the experimental system, we
find strong qualitative similarity between simulation and
experiment (Fig. 3). However, we stress that this compari-
son has limitations. The experimental temperature quench
taken in Ref. [8] was not precisely controlled or recorded;
our homogeneous starting point followed by constant T
dynamics represents a numerically convenient choice,
adopted in the absence of clear experimental guidance. A
further limitation is that we have assumed both phases
share the same viscosity. Lipid diffusion coefficients in
ordered and disordered phases differ roughly by a factor
of 10 [37], suggesting a comparable difference in viscos-
ities between the two phases. The adoption of a single vis-
cosity for the two phases is an approximation; nevertheless,
certain composition dynamics in ternary model systems
appear to be adequately described by using single-viscosity
theories employing (either explicitly or implicitly) a single
“effective viscosity” for the membrane [6,28,36]. This
approximation may not be as severe as it first appears.
The model uses eight physical parameters (7, o, &, ¢y,
Dy, My Mo and £). The temperature T = 21 °C, box size
L =30 um, and viscosity of water n, = 0.01 P follow
immediately from experimental conditions. The remaining
five parameters specify details of the specific bilayer sys-
tem under study. Though precise measurements of all these
parameters are not available, they are known approxi-
mately, either for the specific DOPC-DPPC-Chol system
under study or by analogy to other model systems expected
to show similar behavior. ¢ = 0.4 may be determined
from the DOPC-DPPC-Chol phase diagram [6]. The line
tension o = 0.1 pN is based on flicker spectroscopy mea-
surements of DOPC-DPPC-Chol mixtures [7], which also
sets the rough order of the correlation length ¢ = 40 nm
via the relation oé = kgT, a result motivated by the be-
havior of the Ising model [38] and believed to be consistent
with experiments in ternary lipid systems [39]. The trans-
port coefficients 1,, = 5 X 107° surface poise and Dy =
7 X 10710 ¢m? /s are difficult to precisely measure and are

ls 2s 3s 5s 12s
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FIG. 3. Comparison of experimental (top) and simulated (bot-
tom) phase separation kinetics for 1:1:1 mixtures of DOPC-
DPPC-Chol. Experimental figure adapted from Veatch and
Keller (vesicle diameter is 30 um) [8]. See text for physical
parameters and £ = 30 um, N = 1024, and At = 20 us.
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not known experimentally for the exact system studied
here. The values chosen are consistent with measurements

in related lipid systems [28,37] and Dy =~ 412?5 [12].

The similarity between experiment and theory in Fig. 3
is striking and demonstrates that complex nonlinear bilayer
dynamics over micron length scales and second time scales
may be directly studied numerically. The displayed results
depend upon both membrane and solvent viscosity; a naive
2D simulation assumes the wrong dissipation for length
scales above Lgp (~1 wm). More interestingly, dynamics
of quasi-2D membrane phase separation are qualitatively
different from the pure 2D case. We observe dynamical
scaling with a continuous morphology, with length scale
R(1) ~ 1'/2 for critical mixtures (1:1:1) at R(¢) > Lgp,
which can be explained by using simple scaling arguments
(as in Ref. [24]). In pure 2D hydrodynamic systems in the
creeping-flow limit, dynamical scale invariance breaks
down [40]; in the absence of hydrodynamics, R(z) ~ £1/3
[24,30,40]. R(r) ~ 1'/2 scaling was also seen in Ref. [15];
our results show that this scaling emerges naturally from
quasi-2D hydrodynamics. Details of the unique scaling
aspects of quasi-2D phase separation kinetics will be pre-
sented in a forthcoming paper.

Our modeling 1is consistent with experimental
[6,8,28,33,36] and theoretical results [9,12,35,36] for a
wide variety of phenomena in membrane biophysics. Our
approach is readily combined with continuum simulations
of out-of-plane membrane undulations [41] and coupling
to the cytoskeleton [42]. The fluctuating-hydrodynamics
scheme we have used is perfectly suited for an “immersed-
boundary” [43] treatment of integral membrane proteins
[44]. This sort of simulation may act as a bridge, using
dynamics verified in model membrane systems to elucidate
our understanding of biomembranes. In particular, it will
be interesting to further investigate both the thermody-
namic nature [34] and dynamics [19] of lipid raft models
in light of the results obtained in this work.
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