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We consider the isotropic-to-nematic transition in liquid crystals confined to aerogel hosts, and assume

that the aerogel acts as a random field. We generally find that self-averaging is violated. For a bulk

transition that is weakly first order, the violation of self-averaging is so severe that even the correlation

length becomes non-self-averaging: no phase transition remains in this case. For a bulk transition that is

more strongly first order, the violation of self-averaging is milder, and a phase transition is observed.
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Liquid crystals confined to quenched disordered media
are frequently encountered and are of practical importance
[1]. In certain cases—the prototype example being silica
aerogel—the disordered medium induces a quenched ran-
dom field [2–8]. The random field couples to the liquid
crystal at (essentially) arbitrary locations, and imposes a
preferred orientation of the nematic director at these loca-
tions. One consequence of random-field disorder in liquid
crystals is the loss of long-range nematic order in all
experimentally relevant dimensions d � 3 [9–13]. This,
however, does not rule out the existence of phase transi-
tions. In contrast, the latter are routinely observed
[2,4,8,14] and understanding the influence of random-field
disorder on liquid crystal phase transitions is an important
topic. One known effect is that random fields can change
the order of a transition [3,15]. The bulk isotropic-to-
nematic (IN) transition in three dimensions (3D) is usually
first order, but random fields can render this transition
continuous [2,4,16,17] or wipe it out completely [3].
Other known effects include slow dynamics [5,18–20],
lowering of phase transition temperatures [3,5], and the
formation of multidomain nematic structures [4,21].

It is also known that systems exposed to random fields
generally do not self-average: results obtained for one
sample of disorder, even if the sample is large, are not
necessarily representative for all disorder samples [22–24].
To what extent lack of self-averaging plays a role at the IN
transition is the topic of the present Letter. Our main result
is that, for a bulk IN transition in 3D that is weakly first
order, i.e., the experimentally most relevant case, the vio-
lation of self-averaging in the presence of random fields is
so severe, even the correlation length becomes a non-self-
averaging quantity [25,26]. The IN transition temperature,
as characterized by the temperature of the specific heat
maximum, does not become sharp in the thermodynamic
limit, but is given by a distribution of finite width. Hence,
no sharp phase transition remains.

To illustrate this point, we have simulated the sprinkled
silica spin (SSS) model [27]; models such as this are rou-
tinely used to describe nematics in disordered media
[10,11,27–29]. The SSS model is defined on a 3D periodic

V ¼ L� L� L lattice. A 3D unit vector ~di (spin) is at-
tached to each lattice site i. The energy density is given by

� ¼ �J=V
X
hi;ji

j ~di � ~djjp; J > 0; (1)

with the sum over nearest neighbors (in what follows, the
temperature T is expressed in units of J=kB, with kB the
Boltzmann constant). We set p ¼ 2 for now; Eq. (1) then
resembles the Lebwohl-Lasher model [30], which under-
goes aweak first-order IN transition from a high-T isotropic
phase (exponential decay of the nematic correlation func-
tion to zero), to a low-T nematic phase with long-range
order (exponential decay of the nematic correlation func-
tion to a finite positive value). In the SSS model, quenched
disorder is introduced by marking a fraction q of randomly
selected spins as quenched (we use q ¼ 0:1 always). These
spins are oriented randomly at the start of the simulation and
remain static thereafter, which can be conceived as a ran-
dom field of infinite strength acting on a fraction of the
spins. Even though the random-field strength is infinite,
q ¼ 0:1 remains in the weak field limit, in the sense that
the nonquenched spins still form a percolating network. If q
is set above the percolation threshold, any phase transition
gets trivially blocked, since then the correlations cannot
propagate through the lattice anymore. The SSS model is
different from the random-field Ising model because the
spins are 3D continuous vectors, as opposed to discrete
integers. The SSS model does not support long-range ne-
matic order at any finite temperature [9].
Most of our analysis is based on the distribution

PðkÞ
L;Tð�; sÞ, defined as the probability to observe energy

density � and nematic order parameter s, at temperature
T, system size L, and for some sample of random fields k.
We measure the distributions for L ¼ 7–15. The nematic
order parameter s is defined as the maximum eigenvalue of
the 3D orientational tensor. In a perfectly aligned nematic
sample s ¼ 1, while an isotropic sample yields s ! 0 in
the thermodynamic limit. We use broad histogram meth-
ods, namely, Wang-Landau sampling [31] and successive

umbrella sampling [32], to obtain PðkÞ
L;Tð�; sÞ. These
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methods ensure that the simulation performs a random
walk in phase space. This is crucial because the SSS model
is known to exhibit metastable states [20,33], in which
standard Monte Carlo simulations (sampling directly
from the Boltzmann distribution) may ‘‘get stuck.’’ Since
we expect self-averaging to be violated, it is crucial that the
distributions be measured for k ¼ 1; . . . ;M random-field
samples, whereM must be large. We useM� 1000–2500,
based on the convergence of ‘‘running averages’’ of quan-
tities of interest onto plateau values. We also measure
correlation functions; the latter are obtained for L ¼ 30
using standard Boltzmann sampling.

For each sample k, we compute the thermally averaged
nematic order parameter hsik and measure the fluctuation
between samples R2

s ¼ ½hsi2� � ½hsi�2, with ½�� the disorder
average ½Xn� ¼ ð1=MÞPM

k¼1 X
n
k . If the system self-

averages, Rs ! 0 in the thermodynamic limit, in which
case a single experiment on a large system will be repre-
sentative for all samples. In Fig. 1(a), we plot Rs versus T
for three system sizes. The striking result is that, at low
temperature, Rs does not decay to zero with increasing L
but remains finite. The onset to the non-self-averaging
regime is marked by a maximum in Rs, at temperature
T ¼ TR. We thus identify two regimes: a high-T regime
(T > TR) where the SSS model self-averages (Rs decreases
with L), and a low-T regime (T < TR) where self-
averaging is violated (Rs remains finite).

The violation of self-averaging at low T profoundly

affects the nematic correlation function GðrÞ ¼ h32 ð ~dð0Þ �
~dðrÞÞ2 � 1

2i [10]. [In this work, GðrÞ is calculated using all

spins, i.e., free and static ones.] Since it holds that
GðL=2Þ ¼ hsi2, with L the edge of the simulation box,
and since Rs > 0, fluctuations in GðrÞ between disorder
samples are automatically implied. We must therefore

consider GkðrÞ, i.e., the nematic correlation function
obtained in the kth random-field sample. In the high-T
regime, we find that GkðrÞ decays exponentially to zero,
with negligible fluctuations between samples: the SSS
model is isotropic and self-averaging when T > TR. In
contrast, in the low-T regime, GkðrÞ fluctuates profoundly
between disorder samples [Fig. 2(a)]. Note that we con-
centrate on the tail of GðrÞ and so the range r < 5 is
discarded. In some samples, GkðrÞ decays very rapidly,
while in others the decay is much slower. Clearly, when
T < TR a single measurement of GkðrÞ is not
representative.
The key point is that, in random-field systems, there

exist two correlation functions: the connected correlation
function ½GðrÞ� (i.e., the nematic correlation function aver-
aged over all samples), and the disconnected correlation
function ½GðrÞ2� [34,35]. The solid curve in Fig. 2(a) shows
½GðrÞ�: its decay to zero is most consistent with a power
law, suggesting quasi-long-range order. This agrees with
Ref. [13], but it disagrees with Ref. [10] (where short-
ranged exponential decay is observed). Regardless of the
precise form of the decay, we confirm that GkðrÞ does not
self-average. This is shown in Fig. 2(b), where � �
½GðrÞ2�=½GðrÞ�2 is plotted. At large r, power law growth
� / r�, with �� 0:1, is observed. The disconnected corre-
lations thus decay independently from the connected ones.
In contrast, if GkðrÞ were self-averaging, the fluctuation
½GðrÞ2� � ½GðrÞ�2 would be zero at large r: ½GðrÞ2� and
½GðrÞ�2 then decay with the same exponent. Since the
correlation functions do not self-average, it follows that
properties extracted from these functions do not self-
average either, which includes the correlation length �
[25,26]. The Brout argument [36], which conceives the
thermodynamic limit as a large number of independent
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FIG. 1. Rs versus T using p ¼ 2 (a) and p ¼ 10 (b) for several
L. The temperature where Rs is maximal defines TR. Note that
TR decreases with L. For p ¼ 2, there is no self-averaging at low
T. In contrast, for p ¼ 10, self-averaging is restored at low T,
and a sharp phase transition occurs (marked with the dot).
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FIG. 2. Correlation functions for p ¼ 2, L ¼ 30, and T ¼ 0:5
(which is well below TR) on double logarithmic scales; due to
periodic boundaries up to rmax ¼ 15 can be sampled. (a) GðrÞ
obtained for several samples (dashed curves) together with the
disorder-averaged result ½GðrÞ� (solid curve). (b) � versus r; the
dashed line is a power law fit to the large r regime.
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subsamples of size �, thus breaks down. Instead, �must be
regarded as a random variable. The power law decay of
½GðrÞ� observed by us indicates that � itself is very large, if
not infinite. For � ! 1, the Brout argument breaks down
in any case [24].

How does this affect the IN transition in the SSS model?
The usual approach to detect the IN transition is to measure
the specific heat c ¼ Vðh�2i � h�i2Þ versus T; at the tran-
sition, c reaches a maximum. For each random-field sam-
ple k, we measured the temperature Tc;k where c was

maximal, and the corresponding value cmax;k. Since �
does not self-average, an unusually large fluctuation
½T2

c � � ½Tc�2 is expected. This is confirmed in Fig. 3(a),
where histograms of Tc;k are shown, shifted such that ½Tc�
is at zero, and for several L. The striking result is that the
distributions do not become sharp as L increases. The
specific heat itself is also non-self-averaging. This is illus-
trated in Fig. 3(b), where histograms of cmax;k are shown,

shifted by ½cmax�, and again for several L. We also observed
that ½Tc� is very close to the temperature TR where Rs is
maximal. A signature of the onset to the low-T regime
(where self-averaging is violated) is thus also provided by
the specific heat maximum. Both ½Tc� and TR decrease with
increasing L: the non-self-averaging regime T < TR thus
gets smaller in larger systems. Unfortunately, finite size
scaling with a non-self-averaging correlation length is
complicated—a rigorous scaling theory remains elu-
sive—and so it is difficult to estimate TR in the thermody-
namic limit. The decrease of TR with L, and hence of ½Tc�,
is in any case slow. For instance, if we assume a power law
shift TR � T1 / 1=Ly, T1 � limL!1TR, a fit to our data
yields a maximum value for the exponent ymax � 0:16; this
upper bound is obtained by assuming T1 ¼ 0.

To conclude, the SSS model (with p ¼ 2 in Eq. (1) and
quenched spin fraction q ¼ 0:1) does not feature a sharp
phase transition. For a given sample k of random fields,

a well-defined temperature Tc;k where the specific heat

attains its maximum can be measured, but the fluctuation
in Tc;k between samples remains finite, even as L ! 1. We

attribute this behavior to the existence of a nontrivial
disconnected correlation function, which implies a non-
self-averaging correlation length when T < TR � ½Tc�. In
this regime, the SSS model does not self-average. The
temperature TR decays extremely slowly with system
size; whether TR remains finite in the thermodynamic limit,
or whether it decays to zero, cannot be discerned from our
data. Since the decay of TR and ½Tc� with L is slow, it is
likely that the non-self-averaging regime survives in mac-
roscopic samples (even if T1 ¼ 0). We expect that by
varying T a maximum in the specific heat will be found,
but the value of the specific heat at the maximum will vary
between samples. There is some experimental evidence for
this behavior. The liquid crystal 8CB in bulk undergoes a
weak first-order IN transition [2,4], as does Eq. (1) with
p ¼ 2. Upon insertion in aerogel, the enthalpy obtained in
different samples ranges from 3:6–5:23 J=g, which is un-
usually large [2]. However, since the enthalpy is related to
the specific heat, and since the specific heat does not self-
average [Fig. 3(b)], a large enthalpy fluctuation between
samples would, in fact, not be unexpected.
Do our results imply the absence of IN transitions, in

general, in the presence of random-field disorder? The
answer to this question is an unequivocal ‘‘no.’’ The phase
behavior of liquid crystals is not dictated by any universal-
ity class, and by changing details in the particle interaction
qualitatively different scenarios may develop [37]. To il-
lustrate this, we reconsider Eq. (1) using p ¼ 10; this
makes the bulk IN transition more strongly first order
[37]. Again using a fraction of quenched spins q ¼ 0:1,
we show in Fig. 1(b) the variation of Rs with T. The
striking difference with p ¼ 2 is that self-averaging is
restored at low temperatures. There now appears an inter-
mediate regime of temperatures where self-averaging is
violated, but this regime becomes smaller as L increases.
Hence, in the thermodynamic limit, self-averaging is vio-
lated at only one temperature, which then reflects a sharp
phase transition, with finite size effects given by [22]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½T2

c � � ½Tc�2
q

/ ½Tc� � T1 / 1=Ly; (2)

where T1 is the transition temperature in the thermody-
namic limit. This implies that histograms of ðT1 � Tc;kÞLy

become L independent, provided correct values of T1 and
y are used. The scaling is confirmed in Fig. 4, using T1 �
0:558 and y � 0:88, and the collapse is clearly excellent.
Incidentally, T1 corresponds to an approximate intersec-
tion in curves of Rs versus T for different L [Fig. 1(b)],
which offers an alternative route to locate the transition.
In summary, we have shown that the IN transition in the

presence of random fields is strongly affected by a lack of
self-averaging. Certainly for computer simulations, taking
a disorder average ½�� involving many samples is crucial.
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FIG. 3. Histograms of Tc;k (a) and cmax;k (b), shifted by their
respective averages, and for several L. The histograms do not
become sharp as L increases.
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For a bulk IN transition that is weakly first order, the
violation of self-averaging is so severe, even the correla-
tion length � becomes non-self-averaging [25,26]. This
manifests itself from the nematic correlation function,
which becomes strongly sample dependent. A conse-
quence is that no sharp IN transition remains in this case.
For a bulk IN transition that is more strongly first order, the
violation of self-averaging is restricted to a single tempera-
ture in the thermodynamic limit. In this case, a phase
transition does occur, and finite size effects near the tran-
sition are well understood [22]. As far as we know, a
scaling theory for the case where � does not self-average
remains elusive. In some sense, the finite size effects
observed by us for p ¼ 2 resemble those of Eq. (2), but
in the limit where y ! 0. Perhaps a new scaling theory
should be developed keeping this in mind.
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FIG. 4. Histograms of ðT1 � Tc;kÞLy for p ¼ 10. The curves
for different L collapse, consistent with Eq. (2).
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