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A microscopic approach based on the first-principles effective Hamiltonian is developed to study the

polarization response in temperature-graded ferroelectrics. This approach has been applied to the case of

ðBa0:75Sr0:25ÞTiO3 alloy. A comparison of the computational results with available experimental data

attests to the remarkable accuracy of the present approach. Our computations reveal a strong anisotropy in

the response of polarization to the temperature gradient (TG). In particular, the polarization offset along

the direction of TG is an order of magnitude lower than in the perpendicular direction. The large as well as

the small TGs are considered and found to yield qualitatively different polarization field responses.

Among other striking findings are (i) the coexistence of different phases in chemically homogeneous

regions, (ii) formation of low-symmetry phases, and (iii) thermally controlled polarization rotation.

DOI: 10.1103/PhysRevLett.105.147602 PACS numbers: 77.22.Ej, 77.80.Fm

Graded ferroelectrics have attracted a lot of attention in
recent years, owing to their many remarkable properties
[1–6], and in light of the elevated interest in thermoelectric
materials. The term graded ferroelectric usually refers to a
ferroelectric exhibiting polarization gradient. These polar-
ization gradients can be caused by composition, stress, or
temperature gradients (TGs) and result in dramatic hystere-
sis loop offsets, transpacitor behavior, enormous pyro-
electric responses, and other exotic properties [1–6]. It
was shown experimentally that both ‘‘up’’ and ‘‘down’’
hysteresis offsets can be achieved by introducing TG in
ðBa0:75Sr0:25ÞTiO3 ceramics [1]. In this ground-breaking
experiment a TG was established along the polarization
direction and yielded highly nonlinear polarization offsets
for temperatures near the Curie point (TC). A phenomeno-
logical approach was subsequently developed to reproduce
experimental observations [2]. These works have demon-
strated the potential advantages of temperature-graded fer-
roelectrics that include (1) reversibility of polarization
gradient and built-in potential, (2) the possibility of con-
trolling the gradient magnitude and, therefore, the built-in
potential, and (3) the ability to thermally tune the responses
of ferroelectrics. Interestingly, despite all these exciting
developments, our understanding of polarization-graded
ferroelectrics is still limited. For example, the origin of
hysteresis offsets is still very much controversial. Several
models have been proposed to explain such offsets, includ-
ing the existence of a built-in potential associated with the
polarization gradient [1–3,5,7], formation of polydomain
state [8,9], and artifacts associated with free charge or
asymmetric leakage current [4].

The aims of this Letter are (1) to gain a fundamental
microscopic understanding of the temperature-graded fer-
roelectrics through the development and use of an accurate
first-principles-based computational approach, (2) to re-
veal the unexpected phenomena associated with the tem-
perature grading, and (3) to demonstrate the unusual

effects that nonequilibrium conditions can have on the
material properties.
Specifically, in this Letter, we develop a computational

approach that allows accurate atomistic simulations of
the effect of TG on the properties of perovskite ferroelec-
trics. Our decision to focus on the ferroelectric alloy
ðBa0:75Sr0:25ÞTiO3 is based on the availability of some
experimental data for this alloy [1]. The alloy is modeled
by 12� 12� 31 supercell (22 320 atoms), which is peri-
odic along all three directions to simulate the bulk system.
We chose x, y, and z axes to lie along the (100), (010), and
(001) crystallographic directions, respectively. The total
energy of this supercell is given by the first-principles-
based effective Hamiltonian [10] that depends on the local
soft mode (which is proportional to the electric dipole
moment), inhomogeneous and homogeneous strain varia-
bles, and alloy configuration. It includes a local mode self-
energy (harmonic and unharmonic contributions), a
long-range dipole-dipole interaction, a short-range inter-
action between local modes, an elastic energy, the in-
teraction between the local modes and strains, and the
interactions responsible for alloying effects. This Ham-
iltonian correctly reproduces the complex sequence of
phase transitions in ðBaxSr1�xÞTiO3 alloys for a wide
compositional range [11] and yields results in good agree-
ment with both experiment and first-principles calculations
(see Refs. [10,12,13]).
To simulate the TG we use the direct method that is

analogous to the experimental method. This method re-
quires the use of nonequilibrium molecular dynamics
(MD) that has been previously utilized to simulate trans-
port properties, such as thermal conductivity or diffusion.
The supercell used in the calculation is divided into
N ¼ 31 slabs along the direction of the measurement (z
axis in our case). One of these slabs is used as a heat
source, while another is used as a heat sink [14]. For every
MD step each particle velocity in the source (sink) region is
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scaled by the same factor so that the resulting kinetic
energy is increased (decreased) by an amount �� and a
heat flux��=�t is generated along the z direction. Here�t
is the duration of a single MD time step. The system is then
allowed to reach steady state with the resultant TG con-
trolled by the magnitude of the heat flux. We begin our
simulations by equilibrating the system at the desired
temperature Teq using 500 000 MD steps within the NVT
ensemble. The heat flux is then turned on and the simula-
tions are continued for another 4 000 000 MD steps. The
last 1 000 000 MD steps are used for computing averaged
values of polarization, temperature, and other properties
[15]. We consider two possible mechanical boundary con-
ditions: (i) the unclamped (or stress-free) sample and
(ii) the clamped (or strained) sample. Computationally,
the unclamped sample is simulated by allowing all com-
ponents of the homogeneous strain tensor [16] to relax,
while clamping is achieved by freezing out the strain [17].
To achieve a realistic clamping we fix the homogeneous
strain at its equilibrium value for a given temperature Teq.

We begin by considering the clamped sample since it is
believed that the electrodes in the experimental setup for
measurements on temperature-graded ferroelectrics may
provide this clamping [2]. We first check the accuracy of
our simulations by comparing computational data obtained
for the ðBa0:75Sr0:25ÞTiO3 alloy near TC with the available
experimental data [1]. The results of our simulations for a
sample in the tetragonal state with polarization along the z
direction are given in Fig. 1. The top panel shows the
temperature profile along the z axis, while the bottom panel
shows the change in polarization �PzðzÞ ¼ Pnoneq

z ðzÞ �
Peq
z ðzÞ associated with this temperature profile. Here

Pnoneq
z ðzÞ is the polarization in the sample that is subject

to the TG (nonequilibrium conditions), while Peq
z is the

polarization in the same sample when no TG exists (equi-
librium conditions). The average temperature of the sam-
ple is 310 K. To eliminate contributions of the heat source
and sink, we focus on the region between the 4th and the
13th slabs of the supercell (the region shown between the
two vertical lines in Fig. 1). We will refer to the leftmost
(rightmost) boundary of this region as the hot (cold) slab.
In between the hot and cold slabs the temperature
varies linearly along the sample giving rise to a TG of
�7:3 K=nm. The difference in temperature between the
cold and hot slabs is �T ¼ Tcold � Thot ¼ �26 K. The
linear difference in the temperature gives rise to a corre-
sponding linear variation of polarization (see bottom panel
of Fig. 1). The sample remains in the tetragonal state. We
can now calculate the polarization offset between the cold
and the hot slabs as [18] �Poffset

z ¼ Pnoneq
z ðzcoldÞ �

Pnoneq
z ðzhotÞ ¼ �PzðzcoldÞ ��PzðzhotÞ, which gives

�Poffset
z ¼ 0:033 �C=cm2 for �T ¼ �26 K, in excellent

agreement with experimental findings of Ref. [1] that
reported 0:030� 0:004 �C=cm2 for the same Tcold ¼
300 K and �T. The existence of polarization gradient
results in the built-in, or internal, electric field Eint

z ðzÞ ¼
�½z=�0�rðzÞ�dPz=dz [2], which in our case of the linear

polarization profile gives an average built-in field of
�0:39 kV=cm in the region between the cold and hot slabs
of the sample. Furthermore, we find that the polarization
offset disappears for �T ¼ 40 K, in agreement with ex-
perimental findings of Ref. [1]. Our atomistic simulations
indicate that under these conditions the average tempera-
ture of the sample is 320 K (5 K above the Curie tempera-
ture) and�PzðzÞ ¼ 0 in between the cold and the hot slabs,
which explains the disappearance of polarization offset.
We therefore conclude that our computations accurately
reproduce experimental observations. A more detailed
comparison, however, is not possible due to the structural
and dimensional differences between the samples used in
computations and experiments.
It is worth noting that the case that we just described, as

well as the works of Refs. [1,2], assumes that �T is
computed with respect to the TðzcoldÞ, while the latter is
kept fixed. We will now take advantage of our computa-
tional technique to study a different scenario, where the
temperatures of the hot (cold) slab is given by TðzhotÞ ¼
Teq þ�T=2 [TðzcoldÞ ¼ Teq � �T=2]. In other words, we
will study the gradients that are symmetric with respect to
Teq and denoted as dT

dz jT¼Teq . We begin by considering the

case Teq ¼ 280 K. Under equilibrium conditions the sam-
ple assumes a ferroelectric tetragonal state with polariza-
tion along the z axis. We next apply different �T and
observe the polarization offset associated with it. Our
results are shown in Fig. 2 and reveal many striking fea-
tures. First, we notice that the polarization offset along the
z direction is a linear function of �T for all gradients
considered. Another interesting feature is the existence of
two regions that are described by a different slope �zz as
defined from �Poffset

� =�x� ¼ ���ð�T=�x�Þ, where �

and � correspond to Cartesian coordinates. The first one
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FIG. 1 (color online). The temperature (top panel) and polar-
ization (bottom panel) profiles along the simulation supercell
achieved by using �"=�t ¼ 3:2 meV=fs near Teq ¼ 310 K. The
symbols correspond to the computational data, while the dashed
lines give a linear fit. The schematization of the simulation
supercell is given at the top of the figure.
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(�zz ¼ �2:1 nC=cm2 K) corresponds to the case of rela-
tively small �T (see solid line in Fig. 2), while the second
one (�zz ¼ �1:4 nC=cm2 K) is associated with an
extremely large �T. We now take advantage of our micro-
scopic simulations to understand the origin of the double-
slope behavior. It turns out that the change in the slope as
we increase�T is associated with formation of monoclinic
phase. Since in the limit of large �T the temperature of the
cold slab is below the tetragonal to orthorhombic transition
temperature, this leads to a ‘‘mixing’’ of orthorhombic and
tetragonal phases which, in turn, results in the formation of
monoclinic phase. This monoclinic phase originates near
the cold slab and may extend far in the sample resulting
in continuous polarization rotation across the sample.
Moreover, the ability to induce a monoclinic phase by
introducing temperature inhomogeneity, such as the TG,
may have an important technological implication, since
these low-symmetry phases that result from polarization
rotation are known to yield high dielectric and piezoelectric
responses. In addition, such responses can be tuned ther-
mally. It should be noted, however, that while our computa-
tional technique is very accurate for the limits of both large
and small �T, it may be less accurate in the intermediate
region due to the periodicity of the computational super-
cell. Therefore, the region where the transition from
tetragonal to monoclinic phase occurs should be considered
qualitatively, rather than quantitatively. We observed the
double-slope behavior for all temperatures considered. The
third interesting feature of Fig. 2 is an extremely large
value of �Poffset

z that can be obtained by applying TGs.
Next we investigate the temperature dependence for the

slope �zz that describes the polarization offset in the limit
of small�T. If we assume that in each slab the polarization
simply follows the usual dependence PeqðTÞ associated
with the equilibrium conditions, then we can expect that

the largest magnitude for �zz would occur at the tempera-
ture for which the derivative @PeqðTÞ=@T is at an extre-
mum, i.e., around TC. Contrary to our expectations the
extremum of �zz occurs at 280 K, which is 35 K below
TC (see inset of Fig. 2). The reason for this behavior is the
enormous resistance of the sample to the polarization
gradients, which results in the linear dependence of the
polarization on the temperature along the direction of
temperature (and polarization) gradient. This is true even
for the temperature region where PeqðTÞ is a nonlinear
function. As a result, the slope �zz is minimized not at
the temperature at which the derivative @PeqðTÞ=@T is at
extremum but rather at the temperature where @PeqðTÞ=@T
is a constant. In other words, we observe the minimum of
�zz to occur at the temperature near which Peq is a linear
function of T since it provides the most natural environ-
ment for linear polarization gradients. On the other hand,
near the Curie point Peq is a nonlinear function of T, and,
therefore, in conflict with the linear behavior dictated by
the temperature (and polarization) gradient.
So far we have reported data obtained for the case where

the polarization vector lies along the direction of TG
(longitudinal case). The case of the polarization vector
perpendicular to the TG direction (transverse case, see
Fig. 3) is described next. First, we notice that for the case
when Tcold is held fixed at � 300 K the polarization offset
disappears around �T ¼ 20 K, which is quite different
from the longitudinal case. To make a further comparison
between the transverse and the longitudinal case, we plot
�Poffset

y as a function of �T at Teq ¼ 280 K (see Fig. 3).

Immediately we see that the polarization offset is an order
of magnitude higher as compared to the longitudinal case.
In other words, the transverse component of polarization is
more responsive to TG than the longitudinal one. This
can be explained from the electrostatic point of view by
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FIG. 2 (color online). The polarization offset (�Poffset
z ) be-

tween cold and hot slabs as a function of the temperature
difference �T computed at Teq ¼ 280 K. The inset shows the
dependence of the slope �zz on the temperature Teq in the limit
of small �T. The line is a guide for the eye. The schematization
shows the polarization direction for the longitudinal case.
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FIG. 3 (color online). The polarization offset (�Poffset
y ) be-

tween cold and hot slabs as a function of the temperature
difference �T computed at Teq ¼ 280 K. The inset shows the
dependence of the slope �yz on the temperature Teq in the limit

of small �T. The line is a guide for the eye. The schematization
shows the polarization direction for the transverse case.
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considering the interaction between the local dipoles. We
can relate the case of transverse and longitudinal polariza-
tion gradient to the case of transverse and longitudinal
optical modes. The local fields acting on the local dipole
moments are different in these two cases, which leads to
the softening of the transverse optical mode and stiffening
of the longitudinal optical mode. In the presence of TGs the
same local fields can lead to a stronger resistance to
polarization gradient in the longitudinal case and much
weaker resistance to polarization gradient in the transverse
case. To further strengthen this conclusion we plot the
slope �yz as a function of the temperature Teq for the

transverse case and small �T (see inset of Fig. 3).
Contrary to the longitudinal case, we now observe that
the slope �yz reaches its largest magnitude around TC, as

expected from the PeqðTÞ dependence. Figure 3 also re-
veals that �yz exhibits a double-slope behavior. However,

qualitatively such double-slope behavior is different from
the longitudinal case since the second slope is actually
steeper than the first one. Interestingly, the onset of the
second slope appears to be due to the formation of a para-
electric region near the hot slab of the sample.

Next we are interested in seeing how our results will
change for the case of the unclamped sample. In the limit
of small TGs, the data are very similar to that for the
clamped sample since such small perturbations preserve
the sample averages for polarization, temperature, and
strain. In other words, under such conditions the average
polarization, temperature, and most importantly, strain are
very close to their equilibrium values and therefore the
sample response to the TG is nearly identical for the
clamped and unclamped cases. The most striking discovery
is the longitudinal polarization behavior under large TGs.
Our simulations reveal that for large TGs the polarization
rotates from the longitudinal to the transverse direction. In
other words, applying a large TG along the direction of
polarization under stress-free conditions will cause the
polarization to rotate by 90�. This is again consistent
with our findings that the sample has much higher resist-
ance to polarization gradients along the polarization direc-
tion when compared to the polarization gradients along the
perpendicular direction. In our simulations keeping the
cold slab at 216 K and the hot slab at 328 K led to a 90�
polarization rotation that completed within 4 ns.

In summary,we have proposed a computational approach
that allows atomistic study of ferroelectric materials under
nonequilibrium conditions, such as TGs. Application of this
approach to study the influence of TGs on the polarization
fields in ðBa0:75Sr0:25ÞTiO3 alloys revealed that TGs lead to
reversible and controllable polarization offsets, built-in
electric fields, and even polarization rotation. These find-
ings could lead to important technological advancements,
since built-in electric fields can be utilized in various appli-
cations including transpacitors with a giant energy gain
[19], energy converters (to convert ubiquitous TGs into
electrical signals), thermally tunable devices (where the

piezoelectric and dielectric responses are controlled by
the TG), photovoltaics (where the built-in electric fields
are used to separate the carriers and reduce the recombina-
tion rate), and others. The possibility of being able to
control the polarization direction by introducing local tem-
perature inhomogeneity may lead to unusual thermally
controlled devices including ferroelectric memories. We
have also provided a microscopic explanation for our find-
ings and believe thatmost of our conclusions are general and
valid for a whole class of polarization-graded ferroelectrics,
regardless of how the polarization gradient is achieved.
The authors would like to acknowledge the use of the

services provided by Research Computing, University of
South Florida. I. P. acknowledges support from the
University of South Florida under Grant No. R070699.

*iponomar@usf.edu
[1] W. Fellberg et al., Appl. Phys. Lett. 78, 524 (2001).
[2] S. P. Alpay, Z.-G. Ban, and J. V. Mantese, Appl. Phys. Lett.

82, 1269 (2003).
[3] S. Zhong et al., Appl. Phys. Lett. 89, 142913 (2006).
[4] H. K. Chan, C.H. Lam, and F.G. Shin, J. Appl. Phys. 95,

2665 (2004).
[5] L. Pintilie, I. Boerasu, and M. J.M. Gomes, J. Appl. Phys.

93, 9961 (2003).
[6] M. B. Okatan, J. V. Mantese, and S. P. Alpay, Phys. Rev. B

79, 174113 (2009).
[7] S. Zhong, S. P. Alpay, and J. V. Mantese, Appl. Phys. Lett.

87, 102902 (2005).
[8] A. A. Bogomolov and A.V. Solnyshkin, Crystallogr. Rep.

50, S53 (2005).
[9] A. L. Roytburd and J. Slutsker, Appl. Phys. Lett. 89,

042907 (2006).
[10] L. Walizer, S. Lisenkov, and L. Bellaiche, Phys. Rev. B 73,

144105 (2006).
[11] In case of ðBa0:75Sr0:25ÞTiO3 solid solution the effective

Hamiltonian predicts transition from a cubic paraelectric
phase to a tetragonal ferroelectric phase at 315� 5 K
(320 K), from a tetragonal to an orthorhombic phase at
235� 5 K (235 K), and from an orthorhombic to a
rhombohedral phase at 185� 5 K (165 K) [10]. The
data in brackets indicate the experimental value for the
same transition.

[12] I. Ponomareva et al., Phys. Rev. B 77, 012102 (2008).
[13] J. Hlinka et al., Phys. Rev. Lett. 101, 167402 (2008).
[14] P. Jund and R. Jullien, Phys. Rev. B 59, 13 707 (1999).
[15] This computational setup is designed to accurately com-

pute polarization response to a given TG. It does not
predict how (or whether) such TGs can be achieved.

[16] W. Zhong, D. Vanderbilt, and K.M. Rabe, Phys. Rev. B
52, 6301 (1995).

[17] Note that inhomogeneous, or local, strains are fully re-
laxed for both clamped and unclamped cases.

[18] Note that the expression for �Poffset
z implies that

P
eq
z ðzcoldÞ ¼ P

eq
z ðzhotÞ. This allows us to isolate the tem-

perature induced contribution to the polarization gradient.
[19] J. V. Mantese, N.W. Schubring, and A. L. Micheli, Appl.

Phys. Lett. 79, 4007 (2001).

PRL 105, 147602 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

1 OCTOBER 2010

147602-4

http://dx.doi.org/10.1063/1.1342045
http://dx.doi.org/10.1063/1.1556565
http://dx.doi.org/10.1063/1.1556565
http://dx.doi.org/10.1063/1.2358963
http://dx.doi.org/10.1063/1.1647258
http://dx.doi.org/10.1063/1.1647258
http://dx.doi.org/10.1063/1.1577401
http://dx.doi.org/10.1063/1.1577401
http://dx.doi.org/10.1103/PhysRevB.79.174113
http://dx.doi.org/10.1103/PhysRevB.79.174113
http://dx.doi.org/10.1063/1.2039990
http://dx.doi.org/10.1063/1.2039990
http://dx.doi.org/10.1134/1.2133972
http://dx.doi.org/10.1134/1.2133972
http://dx.doi.org/10.1063/1.2220487
http://dx.doi.org/10.1063/1.2220487
http://dx.doi.org/10.1103/PhysRevB.73.144105
http://dx.doi.org/10.1103/PhysRevB.73.144105
http://dx.doi.org/10.1103/PhysRevB.77.012102
http://dx.doi.org/10.1103/PhysRevLett.101.167402
http://dx.doi.org/10.1103/PhysRevB.59.13707
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://dx.doi.org/10.1103/PhysRevB.52.6301
http://dx.doi.org/10.1063/1.1425067
http://dx.doi.org/10.1063/1.1425067

