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We theoretically demonstrate the capability of a ferromagnetic-normal interface in graphene to focus an

electron wave with a certain spin direction. The essential feature is the negative refraction Klein tunneling,

which is spin resolved when the exchange energy of ferromagnetic graphene exceeds its Fermi energy.

Exploiting this property, we propose a graphene normal-ferromagnetic-normal electronic spin lens

through which an unpolarized electronic beam can be collimated with a finite spin polarization. Our

study reveals that magnetic graphene has the potential to be the electronic counterpart of the recently

discovered photonic chiral metamaterials that exhibit a negative refractive index for only one direction of

the circular polarization of the photon wave.
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There exists a close analogy between the propagation of
photons inside a photonic crystal and that of electrons in a
solid state system as a result of the wave-particle duality in
quantum physics. This analogy has been revealed by sev-
eral counterpart effects in the two progressing fields of
photonics and solid state electron optics [1]. Of particular
interest in both fields has been the focusing of a beam. In
photonics, recent advances in the fabrication of artificial
metamaterials has provided the ability to control the elec-
tromagnetic wave flow inside matter almost completely.
This is not possible in natural materials. In particular, the
realization of left-handed metamaterials, which can have a
negative refractive index [2,3], has shown exciting techno-
logical promises such as perfect lenses [4] and electromag-
netic cloaking [5]. On the other hand, significant
developments have been made in electron optics through
the fabrication of metallic and semiconducting nanostruc-
tures in which the ballistic and phase-coherent transport of
electrons makes it possible to observe electronic effects
with photonic analogues [6]. The idea of using quantum
point contacts to focus the electron wave in a two-
dimensional electron gas subjected to a magnetic field
has already been experimentally achieved [7]. The capa-
bility of graphene, a single atomic layer of graphite, to
become an electronic metamaterial was predicted recently
[8]. It was shown that an interface between electron (n)-
doped and hole (p)-doped regions in graphene can focus an
electron beam, which may lead to the realization of an
electronic Veselago’s lens in analogy with the photonic
left-handed metamaterials.

Despite the promising achievements in focusing the
electron and photon waves, until now little attention has
been paid [9,10] to the polarization degree of freedom of
the focused beam. The most recent development in pho-
tonics is the realization of the so-called chiral metamate-
rials [11,12] in which the degeneracy between the two
circularly polarized waves is broken. A strongly chiral
metamaterial may exhibit negative refraction for one

circularly polarized beam, while retaining positive refrac-
tion for the other. Thus, the interface of such a metamate-
rial with an ordinary medium will focus only the waves
with a certain direction of the circular polarization, which
results in a circularly polarized focusing of a linearly
polarized incident wave.
In electron optics, however, the question of the possi-

bility of spin-polarized focusing of an electron wave has
remained unanswered. The aim of this Letter is to address
this question by introducing a model based on magnetic
graphene. We show that a weakly doped ferromagnetic
(FM) graphene can be the electronic counterpart of pho-
tonic chiral metamaterials, in the sense that it can be used
for focusing electrons with a certain spin direction. Based
on this finding, we propose an electronic spin lens, shown
schematically in Fig. 1, through which an unpolarized
incident electron wave can be focused into an image point
with a finite spin polarization. The spin polarization of the

FIG. 1 (color online). Schematic drawing of the ferromagnetic
(FM) graphene spin lens in a normal (N) sheet. The configuration
of the two spin subbands (being n type or p type) is also shown,
when the electrostatic potential is set to UF ¼ 0, UN ¼ h in FM
and N regions, respectively. The electrons are injected from a
nonmagnetic point source inside the left N region. A spin-up
electron beam (outer straight lines) diverges, but a spin-down
electron beam (inner broken lines) undergoes negative refrac-
tions at the FN interfaces and focuses in the right N region at the
image point of the source.
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image is directed antiparallel to the magnetization vector
of FM. Such a possibility for the realization of a focused
spin accumulation with a tunable direction can also be of
great interest in the field of spintronics [13].

The potential of graphene to be used for electron focus-
ing is suggested by its unique zero-gap semiconducting
electronic band structure [14–16]. Its conically shaped
conduction and valence bands touch each other at the
corners of the hexagonal first Brillouin zone, known as
Dirac points. The carrier type and its density can be tuned
by means of electrical gates or by doping the underlying
substrates. At low energies, the quasiparticles are described

by the massless Dirac Hamiltonian, ĤD ¼ vFp � �̂, with
Fermi velocity vF, momentum p, and Pauli matrices �̂ ¼
ð�x; �yÞ defined in pseudospin space to characterize the

two trigonal sublattices of the hexagonal structure of gra-
phene. The linear dispersion, together with the pseudospin
aspect, gives the carriers a pseudorelativistic chiral nature
with electrons and holes having different chiralities p �
�̂=p ¼ �1. An important manifestation of the chirality
is the so-called Klein tunneling, which is a negative refrac-
tion process through a p-n junction [17–19].

An interesting consequence of the specific band struc-
ture described above is that, in a ferromagnetic graphene
with an exchange potential exceeding its Fermi energy, the
Fermi level for the spin-up and the spin-down carriers lies
in the conduction and the valence spin subbands, respec-
tively [20,21]. This means that the opposite-spin carriers
are of different types, electronlike and holelike, and, hence,
have opposite chiralities. We show that the interface be-
tween such spin-chiral materials and nonmagnetic gra-
phene (with the same type of carriers in the two spin
subbands) exhibits negative refraction for electrons with
a certain spin direction, while retaining positive refraction
for electrons with an opposite spin direction. We demon-
strate that spin resolving the sign of the electronic refrac-
tive index in this manner can lead to the realization of a
graphene normal-ferromagnetic-normal (NFN) spin lens.

Our model consists of a spin-chiral FM stripe of widthw
inside an N graphene sheet as shown in Fig. 1. Such a FM
region can be produced by using, in part, an insulating
ferromagnetic substrate. Alternatively, FMmetals or added
magnetic impurities on top of a graphene sheet can induce
an exchange potential [22,23]. Intrinsic ferromagnetic cor-
relations are also predicted to exist in graphene sheets [20]
and nanoribbons with zigzag edges [24] under certain
conditions. To study the focusing effect, we use the
single-electron Green’s function method. The
Hamiltonian for a spin-sð¼ �Þ electron in one of the
valleys is given by

Ĥ 0
s ¼ ĤD � shðrÞ �UðrÞ; (1)

where hðrÞ and UðrÞ are the exchange and the electrostatic
potential, respectively, and are functions of the 2D position
vector r. We model a nonmagnetic electronic point source

at the position r0 � ðx0; y0Þ in the left N region as the

perturbation potential V̂s ¼ V̂0�ðr� r0Þ, with strength

V̂0. The total Hamiltonian then becomes Ĥs ¼ Ĥ0
s þ V̂s.

The local density of states (LDOS) of spin-s electrons can

be calculated using the relation nsð"; rÞ ¼
�ð1=�Þ ImTrĜsðrjrÞ in which the retarded Green’s func-
tion is defined as

Ĝ sðrjr0Þ ¼ lim
�!0þ

hrjð"þ i�� ĤsÞ�1jr0i; (2)

with Tr denoting the trace over the space of the pseudospin.
Using the Dyson expansion, the change of the LDOS

induced by the perturbation up to the first order in V̂0

can be calculated from the equation

�nsðrÞ ¼ � 1

�
ImTr½Ĝ0

sðrjr0ÞV̂0Ĝ
0
sðr0jrÞ�; (3)

in which the unperturbed Green’s function G0
s satisfies the

relation ½"� Ĥ0
sðrÞ�Ĝ0

sðrjr0Þ ¼ �ðr� r0Þ.
A voltage V applied to the source point can induce a

current in the left N region, which we found to be spin
polarized. The current density for spin-s electrons is ob-
tained from

i sðrÞ=eV ¼ evF ImTr½�̂Ĝ0
sðrjr0Þi�Ĝ0y

s ðr0jrÞ�; (4)

where the level broadening function � is the measure of the
tunneling rate between the source lead and the N graphene
sheet.
Assuming that the potentialsU and h vary only along the

x direction, we can use the Fourier transformation

Ĝ0
sðrjr0Þ ¼

R
dpy exp½ipyðy� y0Þ�ĝs;py

ðxjx0Þ. The new

Green’s function ĝ satisfies the one-dimensional evolution-
like equation (as a function of the position x instead of the
time),

½ivF@x � L̂s;py
ðxÞ�ĝs;py

ðxjx0Þ ¼ �x�ðx� x0Þ; (5)

with a non-Hermitian Hamiltonian L̂s;py
ðxÞ ¼ �½UðxÞ þ

shðxÞ þ "��̂x þ ivFpy�̂z. In principle, Eq. (5) together

with Eqs. (3) and (4) can be solved numerically to obtain
the spin-resolved variations of the LDOS and the current
density for the given profiles of hðrÞ and UðrÞ.
Before we proceed with the full quantum mechanical

calculation, we may apply the adiabatic approximation to

the non-Hermitian Hamiltonian L̂ in Eq. (5), which is valid
when the variation of the potentials is slow on the scale of
the Fermi wavelength in N and FM. In this way the

semiclassical expression of Ĝ0
s is obtained, from which

we deduce that the semiclassical trajectory of a spin-s
electron in N and FM regions consists of straight lines
given by the relations
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y� y0 þ x0 tan�N

¼
8><
>:

x tan�N x < xL

ðx� xLÞ tan�Fs þ xL tan�N xL < x < xR

ðx� wÞ tan�N þ w tan�Fs x > xR:

(6)

Here �N ¼ arcsinðpy=�NÞ and �Fs ¼ arcsinðpy=�FsÞ are
the propagation angles (measured from the normal to FN
interfaces) and �Fs and �N are the electrochemical poten-
tials for a spin-s electron inside FM and N regions, respec-
tively; xLðRÞ indicates the locations of the left (right)

interface.
From the relations (6) we find that the focusing can

occur for spin-down s ¼ � ðh > 0Þ electrons provided
that �F� and �N have opposite signs. In this case, the
angle �F� undergoes a change of sign at both FN inter-
faces, indicating that the NFN structure operates as a spin
n-p-n structure for spin-down electrons. Equation (6) also
gives the location of the two focuses inside FM and the
right N region as xF � xL ¼ ðx0 � xLÞ tan�N= tan�F� and
xN � x0 ¼ wð1� tan�F�= tan�NÞ, respectively. We note
that, in general, the location of the focal point depends
on the transverse momentum py of the incident electron,

which could lead to the appearance of many focusing
points. This problem can be solved if we set a symmetric
spin p-n potential profile at the interfaces by having �N ¼
��F�, which results in a unique, profound focus at xF �
xL ¼ �ðx0 � xLÞ and xN � x0 ¼ 2w. We note that even
with a symmetric profile at the interfaces, only the elec-
trons close to the Fermi level are focused effectively, which
shows the effectiveness of the focusing at low tempera-
tures. From Eq. (6) we have estimated that at a finite
temperature T the focal point will spread along the x
direction over a length of the order ðkBT=�NÞL, where L
is the distance of the source from the left FN interface (kB
is the Boltzmann constant). To have a profound spin lens-
ing, this length should be much smaller than L, which gives
a rough estimate of T <�N=kB. With �N � 10–100 meV
in graphene sheets, a temperature lower than 100 K is thus
required.

On the other hand, to have a significant spin polarization
at the focal points, the spin-up electrons have to remain
unfocused. This is achieved by assigning the same sign to
both �Fþ and �N , which means that the spin-up electrons
remain at the same subband (valence or conduction)
throughout the whole structure. Let us consider two special
cases of �Fþ ¼ �N and �Fþ ¼ 0. In the first case, a spin-
up electron does not feel any potential change and thus
propagates divergently through the system. In the second
case, the density of states of spin-up electrons vanishes in
FM. This implies that a spin-up electron cannot propagate
into the FM region, but rather tunnels through evanescent
modes, which have a small contribution to the variation of
LDOS. These two specific cases correspond to the poten-
tial sets of UF ¼ 0, UN ¼ h and UF ¼ �h, UN ¼ 2h,
respectively.

Figure 2 shows the result of our quantum calculation for
the spin LDOS, defined as �nþ � �n�, inside the right N
region when a point nonmagnetic perturbation is located in
the left N region and for the two sets of potentials
(a) UF ¼ 0, UN ¼ h and (b) UF ¼ �h, UN ¼ 2h de-
scribed above. The distribution of the amplitude of the
spin-current density, jiþj � ji�j, is also shown when a
voltage V is applied to the source point. We have assumed
that the potential varies abruptly at the FN interfaces. The
spin LDOS shows a peak at the image point of the pertur-
bation with Friedel-like oscillations whose period is of the
order of the Fermi wavelength �N ¼ @=�N in N. The
difference between the two sets of potential is visible at
points far from the image point. We note that focusing
electrons by a NFN graphene creates a mirage that repli-
cates LDOS oscillations which, unlike the original pertur-
bation, are spin polarized and mimic the effect of a
magnetic perturbation at the image point. Thus, the NFN
structure produces a magnetic image from a nonmagnetic
point source.
We have also investigated the effect of the smooth

variation of the potential at the interfaces on spin lensing.
The result is shown in Fig. 3, in which the spin LDOS
[Fig. 3(a)] and the distribution of the amplitude of the spin
current-density [Fig. 3(b)] are plotted for the potential set
of Fig. 2(b), but for a finite thickness of the interfaces
�x ¼ �N , over which UðxÞ varies linearly from UF ¼
�h to UN ¼ 2h. Compared to the case of sharp interfaces,
the peaks of the spin LDOS and of the amplitude of the
spin-current density are broadened. Therefore, introducing
a smooth variation of the potential at the interfaces leads to
the weakening of spin lensing. We note that the potential
variation length is restricted in graphene because of the
screening effect [25]. This, together with the low carrier
densities and large Fermi wavelengths of graphene, make it
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FIG. 2 (color online). Spin local density of states (upper plots)
and the amplitude of the spin-current density (lower plots)
around the image point in the left N region (both in arbitrary
units), when a nonmagnetic point source is located in the right N
region. The potential is set to (a) UF ¼ 0, UN ¼ h and
(b) UF ¼ �h, UN ¼ 2h. Both quantities have peaks around
the image point of the source, with spin LDOS showing
Friedel-like oscillations around its peak.
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possible to envisage contacts smaller than the Fermi wave-
length. Spin lensing can be observed experimentally by
spin-polarized scanning tunneling microscopy [26] of the
N graphene region around the focal point, which can image
the variation of the spin LDOS with a resolution of the
order of a few nm.

Regarding the validity of the independent valleys model
[16] of the Hamiltonian (1), it is well known [27] that
unlike a p-n contact in graphene nanoribbons with zigzag
edges for which the intrinsic intervalley mixing is strong
no matter how smooth the potential variation might be, in
the wide contact geometry of our model, the intervalley
scattering becomes effective only for very abrupt contacts

of length on the order of an atomic lattice constant a�
1 �A. In graphene, this length scale is much shorter than �N ,
which is typically a few hundred nm. We have found that
spin lensing is effective for a contact of lengths up to �N .
Thus, our assumption that the intervalley mixing is negli-
gible is well justified for contacts with a length smaller
than �N , but much larger than a.

In conclusion, we have proposed a solid-state electronic
spin lens based on a ferromagnetic graphene which has an
exchange potential higher than its Fermi energy. The key
property is that an interface between such a spin-chiral FM
and a N graphene region exhibits an electronic refractive
index which has different signs for electrons with different
spin directions. We have shown that in a corresponding
NFN structure, a pointlike nonmagnetic source in one N
region produces an image in the other N region which is a
point spin accumulation with associated Friedel-like oscil-
lations of spin LDOS.

[1] H. van Houten and C.W. J. Beenakker, in Confined
Electrons and Photons: New Physics and Applications,
edited by E. Burstein and C. Weisbuch, NATO ASI Series
B Vol. 340 (Plenum, New York, 1995).

[2] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[3] J. B. Pendry, Nature (London) 423, 22 (2003); D. R. Smith,

J. B. Pendry, and M. C.K. Wiltshire, Science 305, 788
(2004).

[4] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[5] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,

1780 (2006).
[6] H. van Houten et al., Phys. Rev. B 39, 8556 (1989).
[7] K. E. Aidala et al., Nature Phys. 3, 464 (2007).
[8] V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, Science

315, 1252 (2007).
[9] Y. V. Pershin and V. Privman, Phys. Rev. Lett. 90, 256602

(2003).
[10] M.A. Hoefer, T. J. Silva, and M.D. Stiles, Phys. Rev. B

77, 144401 (2008).
[11] S. Zhang et al., Phys. Rev. Lett. 102, 023901 (2009).
[12] E. Plum et al., Phys. Rev. B 79, 035407 (2009).
[13] I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76,

323 (2004).
[14] K. S. Novoselov et al., Nature (London) 438, 197

(2005).
[15] Y. Zhang et al., Nature (London) 438, 201 (2005).
[16] C.W. J. Beenakker, Rev. Mod. Phys. 80, 1337

(2008); A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109
(2009).

[17] V. V. Cheianov and V. I. Fal’ko, Phys. Rev. B 74, 041403
(R) (2006).

[18] M. I. Katsnelson, K. S. Novoselov, and A.K. Geim, Nature
Phys. 2, 620 (2006).

[19] N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys.
Rev. Lett. 102, 026807 (2009).

[20] N.M.R. Peres, F. Guinea, and A.H. Castro Neto, Phys.
Rev. B 72, 174406 (2005).

[21] M. Zareyan, H. Mohammadpour, and A.G. Moghaddam,
Phys. Rev. B 78, 193406 (2008).

[22] V. K. Dugaev, V. I. Litvinov, and J. Barnas, Phys. Rev. B
74, 224438 (2006); B. Uchoa et al., Phys. Rev. Lett. 101,
026805 (2008).

[23] N. Tombros et al., Nature (London) 448, 571 (2007).
[24] Y.-W. Son, M. L. Cohen, and S.G. Louie, Nature (London)

444, 347 (2006).
[25] L.M. Zhang and M.M. Fogler, Phys. Rev. Lett. 100,

116804 (2008).
[26] M. Bode, Rep. Prog. Phys. 66, 523 (2003).
[27] A. R. Akhmerov et al., Phys. Rev. B 77, 205416

(2008).

(a)

0
Ny λ/

Ny λ/
(b)

Nx λ/
-10 0

0
-10

Nx λ/
-10

-10

-1 0 1-1 0 1

FIG. 3 (color online). Effect of the smooth variation of the
potential at FN interfaces on the spin image of Fig. 2(b). The
potential is assumed to vary linearly across the interfaces from
UF ¼ �h to UN ¼ 2h over a distance �x ¼ �N . Compared to
the abrupt interfaces, the peaks of spin LDOS (a) and of the
amplitude of the spin-current density (b) are broadened.
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