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Using nonequilibrium dynamical mean-field theory, we compute the time evolution of the current in a

Mott insulator after a strong electric field is turned on. We observe the formation of a quasistationary state

in which the current is almost time independent although the system is constantly excited. At moderately

strong fields this state is stable for quite long times. The stationary current exhibits a threshold behavior as

a function of the field, in which the threshold increases with the Coulomb interaction and vanishes as the

metal-insulator transition is approached.
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Nonequilibrium phase transitions and nonlinear trans-
port are becoming central issues in the study of strongly
correlated systems. One of the most basic phenomena is
the dielectric breakdown (destruction of insulating states
due to strong electric fields) [1–4]. In Mott insulators, the
electron motion is frozen as a result of strong repulsive
interactions [5], and in equilibrium the doping of carriers
into a Mott insulator leads to interesting quantum states
such as high-Tc superconductivity in two-dimensional
materials. Thus, it is natural to ask how nonequilibrium
carriers behave when electrons in a Mott insulator start to
move in response to strong electric fields. Experimentally,
the physics of nonlinear transport in correlated electron
systems has been studied in oxides [1] as well as in organic
materials [6]. In one-dimensional Mott insulators, dielec-
tric breakdown was observed, and it was found that the
current increases with a threshold behavior [1]. The
current-voltage (I-V) characteristics exhibit a strong non-
linearity with a negative differential resistivity between the
weak current and large current regimes. More recently, the
problem of nonlinear transport has also attracted interest
in the cold atom community, where a novel realization of
the Mott-insulating state has been achieved. In Ref. [7] the
effect of a potential gradient was studied to probe the
excitation spectrum.

A theoretical description of nonlinear transport is chal-
lenging because one needs to take into account two non-
perturbative effects, electric fields and electron-electron
interactions, simultaneously. In one-dimensional systems,
reliable numerical techniques such as exact diagonaliza-
tion and the time-dependent density matrix renormaliza-
tion group are available, and a threshold behavior in the
current was indeed observed [2]. A many-body Schwinger-
Landau-Zener mechanism, in which doubly occupied
states (doublons) and holes are pair produced by quantum
tunneling, was proposed as an explanation [3]. In these
studies, a direct calculation of the I-V characteristics is
absent since a steady state current cannot be easily reached
in a finite system. On the other hand, the current through a

thin Mott-insulating layer coupled to leads at fixed tem-
perature was computed in Ref. [8], and a strongly nonlinear
I-V characteristic was found. Another totally unexplored
issue is the temperature effect, where experiments suggest
a relatively strong temperature dependence of the current.
The purpose of this Letter is to address these questions

using dynamical mean-field theory (DMFT) [9], which is
suitable for the study of high-dimensional bulk systems.
Nonequilibrium DMFT [10] has been used to reveal vari-
ous types of steady states and relaxation phenomena in the
Falicov-Kimball model [11–13] and the Hubbard model
[14]. For the current analysis one must compute the dy-
namics of the Hubbard model at rather strong interactions
up to relatively long times. So far, this task has been pro-
hibitively difficult for impurity solvers based on real-time
quantum Monte Carlo simulations [14], but it has become
accessible recently through an implementation of the self-
consistent hybridization expansion within the Keldysh
framework [15].
In the following we focus on the Mott-insulating phase

in the half filled Hubbard model on a d-dimensional cubic
lattice with lattice spacing a,

H ¼ X

hiji�
VijðtÞcyi�cj� þU
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Here cyi� (ci�) denotes the creation (annihilation) operator
for an electron with spin � at lattice site Ri, U is the local
Coulomb repulsion, and Vij describes hopping between the

sites. To study the dielectric breakdown of the Mott insu-
lator, we initially prepare the system in thermal equilibrium
at temperature T ¼ 1=� and apply a spatially homogene-
ous electric field FðtÞ for time t > 0. Using a gauge with
pure vector potential AðtÞ, i.e., FðtÞ ¼ �@tAðtÞ=c, FðtÞ is
incorporated into Eq. (1) by means of the Peierls sub-
stitution, VijðtÞ ¼ V0

ij exp½ieðRj �RiÞAðtÞ=@c�. The field

is chosen to point along the body diagonal �̂ ¼ ð1 . . . 1Þt
of the unit cell. It is turned on to a value F within a
switching time t0, FðtÞ ¼ �̂Frðt=t0Þ, using a switching
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profile rðxÞ ¼ 1
2 � 3

4 cosð�xÞ þ 1
4 cosð�xÞ3 for 0 � x � 1.

The main results turn out to be independent of the switch-
ing, and we choose t0 ¼ 3 if not stated otherwise.

In the limit d ¼ 1 [16] the problem is solved exactly
using nonequilibrium DMFT. The DMFT self-consistency
equations for finite electric field are identical for the
Hubbard model and the Falicov-Kimball model, and they
are detailed in Ref. [11]. The DMFT single-site problem, on
the other hand, is identical to the zero field case, and we
solve it by means of the self-consistent hybridization
expansion [15] up to either first order [noncrossing approxi-
mation (NCA)] or second order [one-crossing approxima-
tion (OCA)]. The latter is known to be reliable for the
insulating phase and the crossover regime [15,17]. We
choose units of energy such that the density of states is
given by �ð�Þ / expð��2Þ, with a width (second moment)

W ¼ ffiffiffi
2

p
=2. Time and field are measured in units of 1=

ffiffiffi
2

p
W

and
ffiffiffi
2

p
W=ea, respectively (@ ¼ 1). In equilibrium, a first-

order Mott transition is found in the paramagnetic phase
[9], with a critical end point at Uc � 3:1 and Tc � 0:02
(determined within OCA).

After an electric field is turned on in the Mott-insulating
phase, we either observe the formation of a quasistationary
state with time-independent current [Fig. 1(a)] or, for very
large values of F, the emergence of Bloch oscillations
[F ¼ 10 in Fig. 1(a)], whose period approaches 2�=F
for large F after the decay of the transient behavior. In
analogy to the Falicov-Kimball model [11], where Bloch
oscillations are quenched by the interaction, there is no
sharp separation between oscillatory and nonoscillatory

regimes, but instead the current behaves irregularly at
intermediate fields. In the following, we only study the
quasistationary state, which will reveal the dielectric
breakdown of the Mott insulator at moderately large, pos-
sibly experimentally accessible fields.
Since our system is not coupled to a thermal bath, the

energyE ¼ hHðtÞi increases at a rate _E ¼ FðtÞjðtÞ, and thus
a stationary state with nonzero current cannot exist forever.
However, we find that jðtÞ remains remarkably stable even
after a considerable energy increase. This fact becomes
clearly evident if one looks at the effective temperature
instead of the energy, i.e., the temperature TeffðEÞ after a
hypothetical thermalization at energy E: For F ¼ 0:8 in
Fig. 1, e.g., Teff increases by a factor of 1.5 during times
4< t < 15 [Fig. 1(b)], while jðtÞ remains almost constant.
The saturation of the current and a simultaneous increase in
the double occupancy d ¼ hni"ni#i [Fig. 1(c)] indicate that

the current flow causes excitations in the system that are
immobile, just like the spin fluctuations in the ground state
that lead to a finite double occupancy but no linear response
conductivity. These excitations do not thermalize on the
time scale of our simulation. Otherwise the current would
increase thermally and dðtÞ would have to match its expec-
tation value in thermal equilibrium at temperature TeffðEðtÞÞ
[thin line in Fig. 1(c)], which is not the case. This behavior
is consistent with recent experiments on ultracold gases
[18], where it was found that artificially created double
occupancies in the Mott insulator relax only on exponen-
tially long time scales.
The quasistationary current turns out to be more or less

independent of how the field is turned on, and by increas-
ing the switching time t0 one can reduce the otherwise
rather strong transient oscillations [Fig. 1(d)]. Even for
slow switching, however, the transient current can be or-
ders of magnitude larger than the stationary current. This
fact is already entailed in the linear response relation
jðtÞ ¼ R

t
0 ds�ðsÞFðt� sÞ, which always holds for small

enough times. The transient is at least proportional to F,
while the long-time limit can be exponentially small (see
below). In particular, in the Mott insulator at T ¼ 0 the dc
conductivity �dc ¼

R1
0 ds�ðsÞ vanishes, while the integral

� ¼ R1
0 dt

R
t
0 ds�ðsÞ over the current yields a nonzero

static polarizability.
After averaging over times t � 10, the quasistationary

current �| at U ¼ 5 shows a sharp increase around F ¼ 0:5
[Fig. 1(e)], which is the hallmark of the dielectric break-
down. We note that both first-order (NCA) and second-
order (OCA) implementations of the self-consistent hy-
bridization expansion yield similar results, but in analogy
to equilibrium calculations the insulating behavior is over-
estimated by NCA, such that the increase of the current is
shifted to stronger fields. In the following we stick to the
more reliable OCA as an impurity solver.
A plot of the conductance �|=F on a logarithmic scale

reveals a crossover from the temperature-dependent linear
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FIG. 1 (color online). Time evolution after turning on a field F
in the insulator (U ¼ 5, � ¼ 10). (a) The current jðtÞ; results for
F ¼ 10 are multiplied with a factor 0.005 to match the scale.
(b) Effective temperature Teff and (c) double occupancy dðtÞ for
F ¼ 0:8. The thin line shows the thermal expectation value of d
at temperature T ¼ TeffðEðtÞÞ. (d) Current at F ¼ 0:8 for various
switch-on times t0. (e) Current, averaged for t � 10, obtained
using either NCA or OCA.
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response conductivity �dcðTÞ at small F to an almost
temperature-independent curve at large F [Fig. 2(a)].
These data suggest that the quasistationary current has a
nonzero T ¼ 0 limit, which reflects the ground state decay,
or dielectric breakdown of the insulator. In analogy to the
one-dimensional case [2,3], we will refer to this limiting
value as the tunneling current jtun. In fact, the low-
temperature data in Fig. 2(a) can be fit with the same
exponential law that determines the ground state decay
rate in the one-dimensional Hubbard model [2,3]

jtunðFÞ ¼ F�1
tun expð�Fth=FÞ; (2)

with a threshold Fth [solid line in Fig. 2(a)].
For small fields and T > 0, the exponentially small

jtunðFÞ is dominated by the linear response current �dcF.
Surprisingly, however, we find that thermal and tunneling
current do not simply add up in the stationary state, but �|=F
can become much smaller than�dc. The peculiar minimum
at the crossover between tunneling and linear response
regime in Fig. 2(a) arises because the relaxation to the
stationary state becomes slower with decreasing field, such
that an average of jðtÞ in a fixed time interval still yields
�dcF for F ! 0. A detailed analysis of the long-time

behavior at intermediate F reveals that the stationary cur-
rent is approached via an exponential decay jðtÞ ¼
�|þ �j expð�t=�Þ, where �| is closer to jtunðFÞ than it is
to the linear response current [Fig. 2(b)]. The decay of the
thermal current indicates that mobile, thermally excited
carriers (and those excited during the switch on) are trans-
formed into immobile excitations in the presence of an
electric field, such that the linear response current is only
visible on a time scale / 1=F. Clearly, such a behavior
must be specific to a closed system, whereas in an open
system the coupling to the environment constantly tends to
restore the thermal state. Nevertheless, the observed re-
laxation phenomenon is an interesting topic for future
theoretical transport investigations, and it is an open ques-
tion whether it is a generic feature in closed systems.
Figure 3 summarizes the main numerical results of

this Letter by comparing the current in the tunneling
regime (T # 0) and in the linear response regime (F ! 0,
t & 1=F). For U & 3, the linear response conductivity �dc

increases with decreasing temperature, while it becomes
exponentially small for U * 3,

�dc � expð��=TÞ; (3)

thus signaling the metal-insulator transition at U � 3
[Figs. 3(a) and 3(b)]. (Strictly speaking, the metal-insulator
transition displayed in Fig. 3 is only a crossover because
temperatures are larger than Tc.) On the other hand, by
fitting �|=F for � ¼ 20with Eq. (2), we obtain the threshold
Fth as a function of the interaction [Figs. 3(c) and 3(d)].
Deep in the insulating phase, both � and Fth increase
linearly with U, while they vanish as the metal-insulator
transition is approached. Because the metal-insulator tran-
sition is first order in DMFT [9], observables in the insulat-
ing phase are expected to display nonanalytic behavior not
at the actual transition Uc2 at T ¼ 0 but at the spinodal
point Uc1 where the insulator at T ¼ 0 disappears. How-
ever, the precise behavior of � and Fth at the transition is
difficult to obtain within the current approach: As Fth de-
creases, a fit of �|=F with Eq. (2) becomes increasingly
difficult because the stationary state is eventually no longer
reached within the numerically accessible times for
F < Fth due to the slow saturation of jðtÞ for small F [cf.
Fig. 2(c)].
Apart from the crossover region at U < 4, however, we

do observe the behavior described by Eqs. (2) and (3) over
a wide range of temperatures and fields. Although our
setup involves a closed system in which energy is con-
served, we expect that these DMFT results resemble the
I-V characteristics of a real Mott-insulating material for
large and small fields, respectively. While the quasistation-
ary state cannot exist forever in our setup, it can indeed be
stable in a real solid provided that the excess energy is
either passed to the lattice or flowing to the boundaries
where it is absorbed by the leads. This would lead to a
steady entropy increase of the environment, while the
entropy of the system itself can only be evaluated after
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FIG. 2 (color online). (a) Time-averaged current, �|=F, for U ¼
5. Crosslike and open symbols correspond to a time average for
8< t < 10 and 10< t < 12, respectively. Filled symbols result
from an extrapolation to t ¼ 1 [see (b)]. The solid black line is
obtained by fitting the data for � ¼ 20 with Eq. (2) [Fth ¼ 1:92,
�1

tun ¼ 0:066]. (b) Long-time evolution of the current for U ¼ 5,
analyzed by a nonlinear least-squares fit jðtÞ ¼ �|þ
�j expð�t=�Þ (solid lines); the value �| is shown by the filled
symbols in (a). (c) The relaxation time �.
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the field is switched off and the system is allowed to relax
to a thermal equilibrium state. Since the tunneling current
turns out to be essentially independent of the excitation of
the system (cf. Fig. 1), differences between the quasista-
tionary current in our setup and the stationary current in
experiments are expected to be of the order of the linear
response current (3), which is negligible compared to
Eq. (2) for large enough fields. For small fields or high
temperatures, on the other hand, the open system should
recover the linear response behavior which is lost in the
closed system at long times.

We find that the ratio Fth=� is only weakly dependent on
the interaction or the bandwidth in the insulator, and it
should thus give the correct order of magnitude for the
breakdown field in real Mott insulators as well. Note that
this value, i.e., Fth � 2� 3�=ea, is much larger than the
temperature-dependent threshold which is obtained in the
experiments of Ref. [1] in connection with a negative
differential resistance (for SrCuO3, e.g., Fth � 10�4�=ea
at T ¼ 190 K). The threshold behavior in these one-
dimensional materials must thus be of a different origin,
and indeed collective excitations were proposed in Ref. [1],
as the temperature dependence of the experimental thresh-
old is similar to what is expected for charge-ordered
materials. The larger threshold found in our analysis,

which may be achieved in experiments on thin layers
of insulating material between metallic leads, should be
observed in paramagnetic Mott insulators when other
sources of destabilizing the insulator are not present.
In conclusion, we have investigated the dielectric break-

down of a Mott insulator in the Hubbard model by comput-
ing the current in a strong electric field F. Our main result
is the formation of a quasistationary nonequilibrium state
with time-independent current, which may be called a
field-induced metal. In the limit of small temperature, the
stationary current resembles the exponential law [Eq. (2)]
for the ground state decay rate in a one-dimensional
Hubbard model due to many-body Landau-Zener tunneling
[2,3]. Its value becomes exponentially small below a
threshold field which vanishes at the metal-insulator
transition.
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FIG. 3 (color online). (a) Linear response conductivity, ob-
tained by extrapolating �|=F to F ¼ 0. Thin solid lines corre-
spond to fits with Eq. (3); the resulting gap �ðUÞ is shown in (b).
(c) Conductance �|=F for the stationary current at � ¼ 20. For
U ¼ 3:5, there is a still a slight drift of the current at the largest
times (see text), and we plot time averages for 8< t < 10
(crosses) and 12< t < 14 (open symbols). Solid lines are linear
fits according to Eq. (2). (d) The threshold field FthðUÞ resulting
from the fits in (c).
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