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We show, using density-matrix renormalization-group calculations complemented by field-theoretic

arguments, that the spin-gapped phase of the one dimensional Kondo-Heisenberg model exhibits quasi-

long-range superconducting correlations only at a nonzero momentum. The local correlations in this phase

resemble those of the pair-density-wave state which was recently proposed to describe the phenomenology

of the striped ordered high-temperature superconductor La2�xBaxCuO4, in which the spin, charge, and

superconducting orders are strongly intertwined.
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Recent experiments in the high-temperature supercon-
ductor La2�xBaxCuO4 near doping x ¼ 1=8 have revealed
a dramatic layer decoupling effect in which anomalous
mesoscopic 2D superconductivity persists well above the
macroscopic 3D superconducting transition temperature
Tc. [1–3] Moreover, the superconductivity coexists with
static stripe (charge and spin) order. It has been proposed
that the anomalous superconducting properties are evi-
dence of the existence of a novel type of superconducting
state, the pair-density wave (PDW) [4–6].

The PDW is a state in which charge, spin, and super-
conducting (SC) orders are intertwined in a spatially mo-
dulated fashion. The SC order has a wave vector Q which
is the same as that of the spin-density wave and half of the
ordering wave vector 2Q of the charge-density wave
(CDW). Its SC order is Larkin-Ovchinnikov–like, but
without the magnetization of the latter. Although much is
known about the properties of this state [5,6], there is, as
yet, no fully satisfactory microscopic theory.

In the context of Bardeen-Cooper-Schrieffer–type
mean-field theories, a PDW is only ever stable at strong
coupling [7] (i.e., outside the regime in which such treat-
ments are reliable). Slave-boson mean-field theories of the
t-J model find that, although the PDW is quite competitive
energetically, it (barely) loses to the uniform d-wave SC
state [8]. While early numerical variational Monte Carlo
studies of the t-J model found a regime in which the PDW
appeared to be stable [9], more recent studies have found
that it has slightly higher variational energy than the uni-
form d-wave state [10,11].

In this Letter we study the superconducting correlations
in the 1D Kondo-Heisenberg model (KHM). This is the
simplest model in which one can investigate the interplay
between strong antiferromagnetic ordering tendencies, re-
presented by a Heisenberg chain, and possible supercon-
ducting and charge-density-wave orders, derived from an
itinerant electron band to which it is coupled. The 1D
character of the model permits us to employ the powerful

numerical density-matrix renormalization-group (DMRG)
[12] and analytic bosonization methods to solve the prob-
lem, despite the strong interactions. On the downside, there
are special features of 1D physics, which may raise ques-
tions concerning the applicability of the results to higher
dimensional situations. On the other hand, especially since
the order we are investigating is unidirectional, and thus
has an essentially 1D geometry, it is plausible that the local
structure of the correlations up to intermediate scales are
dimension independent.
The key finding from our DMRG studies is that, for the

range of parameters considered here, the 1D KHM exhi-
bits a spin-gapped phase with quasi-long-range (power-
law) PDW correlations, i.e., superconducting correlations
which oscillate with a period 2b where b is the lattice
constant of the Heisenberg chain. At the same time the
uniform singlet superconducting correlations are small and
apparently fall exponentially with distance. Since the same
model exhibits substantial, although short-ranged corre-
lated, antiferromagnetic tendencies with the same period,
this state can clearly be identified as a fluctuating version
of the long-sought PDW. Note that the occurrence of a spin
gap in the 1D Kondo-Heisenberg model has been discussed
insightfully in the literature [13,14], and the possibility
of an oscillatory superconducting order parameter was
previously inferred on the basis of bosonization studies
[15–20]. However, we believe that this is the first place in
which the existence and character of this state has been
derived from a microscopic model and the nature of the
correlations is elucidated [21].
Model.—The 1D KHM is defined as a one dimensional

electron gas (1DEG) coupled to a spin- 1
2 chain:

H ¼ H1DEG þHHeis þHK; (1)

where

H1DEG ¼ �t
X
j;�

cyj�cjþ1� þ H:c:��
X
j;�

nj; (2)
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HHeis ¼ JH
X
j

Sj � Sjþ1; (3)

HK ¼ JK
X
j;a

Saj ½cyj�ðsaÞ��0cj�0 �: (4)

Here, cyj� creates an electron with spin � at site j, Sj is the

spin- 12 operator of the spin chain, and s
a ¼ 1

2 �
a (�a¼x;y;z are

Pauli matrices).
In typical physical circumstances in which Kondo phys-

ics arises, one would expect JH and JK � t. In this limit,
the length scales characterizing the Kondo effect are ex-
ponentially large, and hence not readily accessible by any
numerical method. We therefore use JH � JK � t. On the
basis of the field-theoretic analysis (see below), we expect
the character of the phases to survive to small J=t. More-
over, the JH � JK � t regime is not necessarily unphysical;
it can be derived from the U ! 1 limit of a Hubbard
model on the spin chain, with chemical potential chosen
so that there is one electron per site, and with hopping

matrix element along the chain, tH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JHU=2

p
, and hop-

ping between the spin chain and the 1DEG, tK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JKU=2

p
.

Numerical results.—The model (1) was solved using
DMRG on finite lattices with L ¼ 32–128 and open
boundary conditions. Up to m ¼ 1800 states were kept,
giving DMRG truncation errors smaller than 10�6.

Figure 1 shows the spin gap �s ¼ E0ð1Þ � E0ð0Þ, where
E0ðSzÞ is the ground state energy of a system with a z spin
projection Sz. The spin gap was extrapolated to the ther-
modynamic (L ! 1) limit. The results are shown for
JH ¼ JK ¼ 2t, as a function of the concentration of elec-
trons in the 1DEG, n. Because of the particle-hole sym-
metry of the model, it is sufficient to consider n < 1.

Near n ¼ 1 there is a sizable spin gap [14];�s decreases
away from n ¼ 1. For n ¼ 1 (not shown), the spin gap is
�s � 0:8, but there is also a finite charge gap in the L ! 1
limit. We henceforth focus on n ¼ 0:875, for which �s is
substantial. Since �s persists at lower densities, we expect
the low-energy properties at smaller n to be similar,
although the correlation length is larger.

PDW correlations.—The opening of a spin gap is ex-
pected to lead to enhanced SC (as well as CDW) correla-
tions. To study these correlations, we have applied a local
pair field to the left boundary [22]:

Hpair ¼ �ðcy1"cy2# � cy1#c
y
2"Þ þ H:c:; (5)

where we fixed � ¼ 0:5t. (We have checked explicitly that
the results do not depend on the size of � [23].) The
superconducting response of the system was probed by
measuring the following induced order parameters
throughout the system [24]:

�ðjÞ ¼ hcyj"cyj#i; �BðjÞ ¼ 1

2
hcyj"cyjþ1# � cyj#c

y
jþ1"i; (6)

where �ðjÞ and �BðjÞ are, respectively, the expectation of
the singlet pair creation operator on site j and on the bond
from site j to site jþ 1. Figure 2(a) shows �ðjÞ and �BðjÞ
in an L ¼ 64 system. �ðjÞ appears to decay very rapidly
away from the left boundary. �BðjÞ decays much more
slowly, and exhibits pronounced oscillations as a function
of position with wave vector q ¼ �=b, as it changes its
sign between every consecutive bond. Longer periods are
also apparent in the figure. These oscillations clearly
indicate that the dominant pairing correlations are at a
nonzero momentum.
References [15–17,19,20] proposed, based on bosoniza-

tion, that the spin-gapped phase of the KHM has dominant
pairing correlations at a nonzero wave vector, described by
a ‘‘composite’’ order parameter [20]

�cðjÞ ¼ ð�1Þj
��X

�;�0
cyj�1�ðisysÞ��0cy

jþ1�0

�
� Sj

�
: (7)

In addition, PDW order should be accompanied by a uni-
form (q ¼ 0) ‘‘charge 4e’’ order parameter [26]:

�4eðjÞ ¼ hcyj"cyj#cyjþ1"c
y
jþ1#i: (8)

Figure 2(b) shows �PDWðjÞ � ð�1Þj�BðjÞ, as well as
�cðjÞ and �4eðjÞ, as a function of position, on a logarith-
mic scale. The largest, and most slowly decaying, order
parameter is �PDWðjÞ, suggesting that the system is best
described as a fluctuating PDW state. As expected, �4eðjÞ
and �cðjÞ are nonzero, but small. �cðjÞ is modulated as a
function of position, while �4eðjÞ is smooth.
The wave vectors of the leading SC and CDW fluctua-

tions can be determined by a Fourier analysis of the SC and
CDWorders [25]. Figure 3 shows the absolute values of the
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FIG. 1 (color online). �s versus the electron concentration in
the 1DEG. JH ¼ JK ¼ 2t. The error bars are a result of the
extrapolation to the thermodynamic limit. (Relative to the ex-
trapolation error, the DMRG truncation error is negligible.)
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FIG. 2 (color online). (a) The SC order parameters � and �B

(see text) as a function of position in an L ¼ 64 system with n ¼
0:875. (b) Measurements of �PDW, �4e, �c versus position. The
oscillatory behavior close to the right boundary is an edge effect.
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Fourier transforms of �BðjÞ and nðjÞ � P
�c

y
j�cj� for

system sizes between L ¼ 32 and 128. The charge density
exhibits a large peak at q ¼ 2kF þ �=b which grows as a
function of system size, where 2kF � �n. There are also
small subleading features at q ¼ 2kF and q ¼ �=b. The
main feature in the Fourier transform of �B is a pro-
nounced peak at q ¼ �=b, with a subleading peak at q ¼
2kF. This shows unambiguously that the dominant order in
this system is a PDW with q ¼ �=b, accompanied by
CDW correlations at q ¼ 2kF þ �=b.

In order to elucidate further the nature of the micro-
scopic correlations in the system, we perform another
simulation in which both a pair field [Eq. (5)] and a
Zeeman field, HZ ¼ �hSzj¼1 (h ¼ 0:5t), are applied to the

left boundary of the system. The induced charge, super-
conducting, and magnetic (hSzji) order parameters are

shown near the middle of the L ¼ 64 system in Fig. 4(a).
The magnetic order oscillates at wave vector q ¼ �=b (the
same as the PDW) with an envelope that decays exponen-
tially on longer length scales.

Next, we would like to understand what determines
the PDW wave vector. We performed another calculation
in which the spin chain is ‘‘diluted’’; i.e., there is one
spin site for every two 1DEG sites. Equation (3) is re-

placed by ~HHeis ¼ JH
P

jS2j � S2jþ2, and similarly ~HK ¼
JK

P
j;aS

a
2j½cy2j�ðsaÞ��0c2j�0 �. Figure 4(b) illustrates the re-

sults for hSzji, hnji, and �B near the middle of an L ¼ 128

system. (In order to maintain a large spin gap, nwas taken to
be 0.625.) Clearly, the PDWorder changes sign across every
spin site, indicating that the dominant PDW wave vector is
again q ¼ �=b, where now b ¼ 2. Thus, the period of the
PDW is tied to that of the local (fluctuating) magnetic or-
dering. The local correlations in Figs. 4(a) and 4(b) are a one
dimensional version of the phenomenologically proposed
‘‘striped-superconducting’’ state for La2�xBaxCuO4 [4].
Continuum limit.—Analytical progress can be made in

the limit JH, t � JK, where we may first take the contin-
uum limit of both the 1DEG and the spin chain. We use a
description in terms of the bosonic fields ’c, ’s, and ~’s,
representing charge or spin fluctuations in the 1DEG and
spin chain, respectively (and the respective conjugate fields

�c, �s, and ~�s). The Hamiltonian densities of the 1DEG and
the spin chains take the form [13,19,20]

H 1DEG ¼ X
�¼c;s

v�

�
K�

2
ð@x��Þ2 þ 1

2K�

ð@x’�Þ2
�
;

H Heis ¼ 1

2
~vs½ð@x ~�sÞ2 þ ð@x ~’sÞ2�;

(9)

where Kc, Ks, vc, vs, and ~vs are, respectively, the charge
and spin Luttinger parameters of the 1DEG and the corre-
sponding charge and spin velocities. The various bosonized
fields satisfy the commutation relation ½’�ðxÞ; @x��ðx0Þ� ¼
i�ðx� x0Þ, and similarly for ~�s, ~’s. We neglect marginally
irrelevant contributions to HHeis.
For a an incommensurate filling n of the 1DEG, only

‘‘forward scattering’’ terms in the spin channel can couple
the 1DEG and the spin chain. Up to irrelevant (backscat-
tering) operators, the Kondo Hamiltonian density is

H K ¼ JKa
8� ½ð@x’þÞ2 � ð@x’�Þ2� þH int [13], where

�	 ¼ 1ffiffi
2

p ð~�s 	 �sÞ, ’	 ¼ 1ffiffi
2

p ð~’s 	 ’sÞ, and H int ¼
cosð ffiffiffiffiffi

4�
p

��Þ
2ð�aÞ2 ½cosð ffiffiffiffiffiffiffi

4�
p

’�Þ þ cosð ffiffiffiffiffiffiffi
4�

p
’þÞ�. (a is a micro-

scopic cutoff.) Under renormalization, cosð ffiffiffiffiffiffiffi
4�

p
��Þ


cosð ffiffiffiffiffiffiffi
4�

p
’þÞ is marginally relevant [13], while

cosð ffiffiffiffiffiffiffi
4�

p
��Þ cosð

ffiffiffiffiffiffiffi
4�

p
’�Þ is irrelevant, since it contains

the dual fields �� and ’�. The strong coupling phase has a
spin gap, while the charge degree of freedom ’c remains
decoupled and gapless.
Correlations in the spin-gapped phase.—The form of the

dominant (slowest decaying) correlations follows from the
following considerations. A theorem by Yamanaka et al.
[27] guarantees the existence of a charge zero, momen-
tum 2k�F ¼ �ntot gapless excitation, where ntot is the
total electron density in the system (counting both the
1DEG and the spin chain). Here, ntot ¼ nþ 1

b ; therefore,
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FIG. 3 (color online). Absolute values of the Fourier trans-
forms (FT) of (a) the charge [hnðjÞi] and (b) the SC [�BðjÞ]
orders. L ¼ 32–128.

FIG. 4 (color online). Order parameters in (a) an L ¼ 64 KHM
chain with n ¼ 0:875 and (b) an L ¼ 128 ‘‘diluted’’ KHM chain
(with one spin site for each two 1DEG sites) with n ¼ 0:625.
Circles, 1DEG hole density [1� hnðjÞi]; bond color and thick-
ness, the bond-centered SC amplitude �BðjÞ. The arrows show
the spin density hSzðjÞi.
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2k�F ¼ 2kF þ �=b. Let us denote the operator that creates

these excitations Ô2k�F . Since there is a spin gap, Ô2k�F is

necessarily a spin singlet, i.e., a CDW operator.
In addition, as long as there is no charge gap, the singlet

‘‘	-pairing operator’’ [16,20] Ô	 ¼ c�"c�# ¼ 1
2�a 


exp½i ffiffiffiffiffiffiffi
2�

p ð�c ��cÞ� also creates gapless excitations.
[c	;� annihilate right- (left-)moving electrons with spin

� ¼"; # , respectively.] This operator has total momentum
�2kF and charge 2e. Therefore, the ‘‘PDW operator’’

ÔPDW ¼ Ô	Ô2k�F also creates gapless excitations. Adding

the quantum numbers carried by Ô	 and Ô2k�F , we see that

ÔPDW carries charge 2e and momentum �=b. This guaran-
tees the existence of quasi-long-range PDW correlations in

the spin-gapped phase. As usual, the correlations of ÔPDW

(as well as those of Ô2k�F ) fall off with a nonuniversal

exponent, which depends on Kc. The (zero momentum) Co-

oper pair operator is ÔSC ¼ cþ"c�# ¼ 1
2�a e

i
ffiffiffiffiffi
2�

p ð�cþ�sÞ. Its
correlations are short ranged, since �s ¼ ð�þ þ��Þ=

ffiffiffi
2

p
;

in the spin-gapped phase the field �� is pinned, while its
dual �� undergoes strong fluctuations, suppressing the

correlations of ÔSC. Consequently, the leading supercon-
ducting correlations are for operators with nonzero
momentum.

Generically, any singlet operator that carries charge 2e

and momentum �=b is expected to couple to ÔPDW, and
therefore to have quasi-long-range correlations. For ex-
ample, both �PDW and �c defined above have the correct
quantum numbers, and therefore their correlations should

fall off with the same exponent as that of ÔPDW. According
to our numerical simulations, the spin-gapped phase has
strong PDW correlations, so it is best characterized by the
�PDW order parameter. The results in Fig. 3 are fully
consistent with the field-theoretic analysis above. In par-
ticular, the density profile shows a large peak at q ¼ 2k�F
which grows with system size, indicating slowly decaying
fluctuations centered at that wave vector. The pairing cor-
relations are strongly peaked at q ¼ �=b, with a subdo-
minant peak (which does not grow with L) at q ¼ 2kF,
corresponding to the gapless 	-pairing mode.

Discussion.—The correlations in the spin-gapped phase
of the 1D KHM are best described as a PDW phase, which
is a (quasi)condensate of nonzero center of mass momen-
tum Cooper pairs. Locally, the correlations are strikingly
similar to those of the PDW state recently proposed to
describe the striped phase of La2�xBaxCuO4, which inter-
twines spin, charge, and density orders. A study of a
two-chain KHM found, instead, dominant uniform pairing
correlations [28]. It remains an important question whether
the PDW state survives in other multichain generalizations
of the present model. Finally, the 1D KHM can be viewed
as a variation of the three-band copper-oxide model [29],
with strongly localized spins on the Cu sites and a 1DEG
representing doped holes on O sites. Therefore it seems
plausible that such a model can exhibit a PDW phase as

well. Whether it can be realized in the physically relevant
parameter regime remains to be seen.
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