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Contrary to previous reports, we show that the conventional GW (the so-called G0W0) approximation

can be used to calculate accurately the experimental band gap (�3:6 eV) of ZnO. The widely discussed

underestimate of the quasiparticle gap of ZnO within the GW method is a result of an inadequate

treatment of the semicore electrons and the slow and nonuniform convergence in the calculation of the

Coulomb-hole self-energy in previous studies. In addition, an assumed small kinetic energy cutoff for the

dielectric matrix may result in a false convergence behavior for the quasiparticle self-energy.
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Quantitative understanding of electronic excitations in
semiconductors has been and still is a central topic of
condensed matter theory because of its fundamental and
technological importance. With the advent of modern elec-
tronic structure method that includes electron-electron in-
teractions from first principles [1,2], theory is now used to
predict and accurately compare with experiment excited-
state properties of semiconductors and insulators without
any adjusting parameters. However, there are some per-
ceived exceptions. One widely discussed and notable case
is zinc oxide.

Zinc oxide (ZnO) has attracted considerable attention
for its potential application in a variety of fields such as
optoelectronics and spintronics [3,4]. Surprisingly, theo-
retical understanding of the electronic structure of this
supposedly simple sp semiconductor turns out to be rather
challenging. The band gap of ZnO calculated within the
local density approximation (LDA) is about 0.7 eV if the
semicore 3s, 3p, and 3d electrons are considered as va-
lence electrons. Subsequent quasiparticle calculations
within the conventional G0W0 approach [1,2] gives a
band gap of 2.44 eV [5], which is more than 1 eV smaller
than the experimental result of about 3.6 eV [6,7] after
correcting for the lattice effects. Two recent LDA=GW
calculations [8,9] gave an even smaller gap of 2.12–
2.14 eV, although this value is increased to about 3.2 eV
[8] by subsequent self-consistent GW calculations.

Aside from the well-known problem that Kohn-Sham
eigenvalues are not quasiparticle energies, an additional
reason for the origin of the severe underestimate of the
band gap of ZnO and other related systems (e.g., InN,
CdO) within the LDA has been traced to the inadequate
treatment of the semicore electrons within the LDA, which
underbinds the d states and leads to an unphysically strong
pd hybridization. Since the underestimate of the binding
energies of semicore d states comes largely from the
incomplete cancellation of the self-interaction of d elec-

trons within the LDA, computational schemes (e.g.,
LDAþU [10], self-interaction corrected (SIC) [11], or
other generalized Kohn-Sham methods) in which the self-
interaction is effectively removed should give a better
mean-field description of the ground state properties.
Subsequent quasiparticle calculations within the conven-
tional G0W0 approach [1] may then be applied.
However, even after the removal of the spurious pd

hybridization using the combined LDAþU and GW
method [12,13], it is found that the calculated quasiparticle
band gap of ZnO is still well below the experimental value.
This raises a serious question regarding the accuracy of the
conventionalG0W0 approach and prompts us to investigate
more carefully another important issue that has not been
addressed adequately except for a few cases [14,15],
namely, the band convergence issue in the quasiparticle
calculations.
Within the GW method [1], the calculation of both the

electron irreducible polarizability �0 and the Coulomb-
hole self-energy �coh involves contributions from an
infinite number of unoccupied (conduction) bands.
Specifically, for the Coulomb-hole self-energy we have

�coh
nk ¼ 1

2

X

mqGG0

Dnm
GG0 ðk;qÞ�2

GG0 ðqÞvðqþG0Þ
~!GG0 ðqÞ½E� �m;k�q � ~!GG0 ðqÞ� ; (1)

where Dnm
GG0 ðk;qÞ ¼ ½Mnm

G ðk;qÞ��Mnm
G0 ðk;qÞ, and

Mnm
G ðk;qÞ ¼ hmk� qje�iðqþGÞ�rjnki. In the above ex-

pression for the Coulomb-hole energy, we adopt the gen-
eralized plasmon-pole model [1];�GG0 ðqÞ and ~!GG0 ðqÞ are
the effective bare plasma and mode frequencies, and vðqþ
G0Þ is the Fourier transform of the bare Coulomb potential.
In practice, the above summation is always truncated to
include a finite number of empty states. However, the band
convergence behavior of the GW calculation in general is
slow and can be very different from system to system. Even
within a single system, the convergence behavior can be
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very different for different states. Because of the distinct
character of the valence and conduction states of ZnO, an
enormous number of empty states has to be included in the
summation to achieve converged quasiparticle properties.

We start our discussion by taking a close look at the
electronic structure of ZnO calculated within the LDA as
shown on the left panel of Fig. 1. All calculations were
done using the pseudopotential plane wave approach as
implemented in PARATEC [16]. All three semicore subshells
of Zn, namely, 3s, 3p, and 3d, are treated as valence
electrons. Since these orbitals are strongly localized, a
very high-energy cutoff (Ecut ¼ 350 Ry) for the plane
wave expansion of the wave functions is needed. The
electronic structure of ZnO calculated within density func-
tional theory (DFT) has been discussed by many authors.
Here we summarize the main features. First, the Zn 3d
states are located at �5 eV below the valence band maxi-
mum (VBM). This is more than 2 eV too shallow compared
with the measured value of 7.5–8.8 eV [17]. Second, these
underbound d states strongly hybridize with the valence p
states and push these states up, resulting in a greatly
reduced gap (�0:7 eV) within the LDA. We plot in
Fig. 1 the decompositions of band wave functions c nk

onto the oxygen 2p (left top panel) and the Zn 3d (left
bottom panel) orbitals as vertical bars (arbitrary scale)

superimposed on the band structure. The size of the vertical

bars is proportional to ap;dnk ¼ jh�p;djc nkij2, where �p;d is

the atomic oxygen p or zinc d orbital. Strong pd hybrid-
ization is clearly seen. Therefore, correction to this largely
unphysical pd hybridization is the first step towards an
accurate prediction of the quasiparticle properties of ZnO
and related materials.
Among various schemes that aim for a better treatment

of strongly localized d-electron systems at a mean-field
level, the LDAþU method [10,18] has been widely rec-
ognized as a simple yet powerful approach. In this work,
we use a rotationally invariant LDAþU method [18,19]
implemented within the pseudopotential plane wave for-
malism. The screened Coulomb and exchange parameters
(U ¼ 8:0 eV, J ¼ 0:9 eV) used in this work are calculated
from first-principles and will be reported separately. The
right panels of Fig. 1 shows the band structure of ZnO
calculated using the LDAþUmethod. Decompositions of
the band wave functions onto oxygen 2p and Zn 3d states
are shown as vertical bars similar to the case of the LDA
band structure. Compared with the LDA band structure
shown on the left panels, several differences are readily
seen. First, the d-bands are located deeper in energy and
are detached completely from the valence p states. Second,
the direct energy gap increases from 0.7 eV within the LDA
to 1.28 eV in the LDAþU method. In addition, the band-
width of the oxygen p valence states is increased from
about 4.0 eV to 4.9 eV and is in better agreement with
experiment. Finally, there is now significantly less pd
hybridization. Therefore, it is appealing to carry out GW
quasiparticle calculations starting from the LDAþU
solutions.
Figure 2 compares the quasiparticle gap of ZnO as a

function of the number of conduction bands Nc included in
the Coulomb-hole summation, calculated using the
LDA=GW and LDAþU=GW methods with a highly
converged dielectric matrix which is evaluated with a cut-
off energy of 80 Ry, as will be discussed later. The widely
quoted value of the quasiparticle gap of ZnO (2.4–2.5 eV)
within the conventional LDA=GW approach results from
including about 200 conduction bands in evaluating�coh as
indicated by the vertical dashed line in the figure. We
mention that this is typically the highest number of con-
duction bands included in previous GW calculations
[5,8,9,20]. As it is clearly shown in the figure, this value
is far from being converged. In fact, an enormously larger
number of conduction bands (Nc � 3000) is needed to
obtain a converged GW gap. The kinetic energy of the
highest conduction band included in the calculation is also
shown (see the horizontal scale at the top of the figure). For
example, the energy of the Nc ¼ 3000 band state is about
67 Ry. The converged gap within the LDAþU=GW
approach is slightly over 3.6 eV, which agrees very well
with experiment. A question immediately follows: Why
does the band gap of ZnO converge so slowly whereas
other materials, such as Si or Ge , seem to converge much
faster with respect to Nc?
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FIG. 1 (color online). The LDA (left panels) and LDAþU
(right panels) band structures of ZnO. Projection of the band
wave functions onto O 2p (top panels) and Zn 3d (bottom
panels) orbitals are shown as vertical bars superimposed on
the band structure.
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To better understand the convergence behavior of the
quasiparticle band gap of ZnO, we analyze the Coulomb-
hole self-energy �coh for the conduction band minimum
(CBM) and VBM states. Figure 3 shows the dependence of
�coh on Nc for the CBM and VBM calculated within the
LDA=GW and LDAþU=GW methods using a converged
dielectric function. The different convergence behavior of
the CBM and VBM is clearly seen. Whereas �coh for the
CBM converges relatively quickly with respect to Nc, that
for the VBM converges very slowly. This nonuniform
convergence behavior of the VBM and CBM is a result
of the dramatically different character of the CBM and
VBM wave functions: The CBM is derived from the delo-
calized Zn 4s state; the VBM, on the other hand, is derived
from the fairly localized O 2p state. Figure 4 shows the
Fourier components of CBM, VBM, and one of the Zn 3d
states calculated within the LDAþU method. Some arti-
ficial broadening is applied to smear out the discrete nature

of the wave functions in momentum space. For the CBM
state, the contribution to the charge density from plane
wave components with kinetic energy EG ¼ jGj2=2> 10
Ry is only 2%. In comparison, a kinetic energy of 53 Ry is
needed to account for 98% of the VBM charge density. The
high-G plane waves components in the wave function are
responsible for the strong coupling between the VBM state
and high-energy conduction bands. As a result, the con-
vergence of the�coh for the VBM state is much slower than
that for the CBM state. In materials such as Si and Ge, both
CBM and VBM are derived from the same atomic p states,
the quasiparticle gap converges much faster.
We now investigate in more detail the difference be-

tween the LDA=GW and LDAþU=GW results. In addi-
tion to the difference of about 5% in the converged
quasiparticle gaps obtained by the two methods, there are
other aspects that should be mentioned. First, the absolute
value of the Coulomb-hole energy for the VBM state
calculated with the LDA=GW method is about 0.8 eV
larger than that calculated with the LDAþU=GW method
(Fig. 3). This is because within the LDA, the valence p
states hybridize strongly with d states as discussed earlier.
As a result, the calculated VBM wave function is more
‘‘localized’’ within the LDA than the LDAþU method.
Moreover, the quasiparticle corrections to the LDA
eigenvalues for the d states are about �3:8 to � 4:1 eV.
In comparison, the corrections to the LDAþU eigen-
values for the d states are significantly smaller
(�1:5 to �1:8 eV). This suggests that the LDAþU ei-
genvalues are indeed closer to the quasiparticle energies.
We would like to address another important issue that

relates to the convergence of the GW calculation, i.e., the
cutoff energy for the dielectric matrix �GG0 ðqÞ. It is ex-
pected that at high G values, the screening effects are
negligible and the interaction between electrons is reduced
to the bare Coulomb interaction. Therefore, the dielectric
matrix can be truncated at a high enough G value.
However, a low cutoff energy also leads to an underesti-
mate of the correlation effects and may give a false con-
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FIG. 2. Quasiparticle band gap of ZnO as a function of the
number of conduction bands included in the Coulomb-hole self-
energy calculation with a high cutoff energy (80 Ry) for the
dielectric function as discussed in the text.
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vergence behavior. Figure 5 shows the calculated quasi-
particle band gap for ZnO within the LDAþU=GW
method using different cutoff energies (E ¼ jGj2=2 Ry)
for the dielectric matrix. If a cutoff energy of 10 Ry is used,
the band gap converges to about 2.95 eV with as few as 500
conduction bands in the Coulomb-hole energy calculation.
This false and rapid convergence can be easily understood
within the COHSEX approximation. The Coulomb-hole
energy in the static approximation is

�coh
nk ¼ 1

2

X

mqGG0
Dnm

GG0 ðk;qÞWpol
GG0 ðqÞ; (2)

where Wpol ¼ ð��1 � 1Þv is the polarization potential and
the D matrix is defined in Eq. (1). It is obvious that a low
cutoff energy for the dielectric matrix will prevent contri-
bution from high-energy conduction bands to the
Coulomb-hole self-energy and hence, it leads to a false
convergence behavior. The more localized the quasipar-
ticle wave function is, the higher the cutoff energy for the
dielectric matrix that is needed for an accurate account for
the correlation effects. We note that the cutoff energy for
the dielectric matrix used in previous calculations [5] is
10–20 Ry which is not high enough for systems such as
ZnO. An absolute convergence is sometimes not necessary
for systems in which all relevant electron wave functions
have similar character (e.g., Si, Ge, etc) since often it is the
energy differences that are of primary interest. However,
for systems containing both localized and delocalized
states, or in cases in which the absolute energy levels are
of interest, an absolute convergence becomes very
important.

Finally, we comment on the widely discussed issue
about the position of the semicore d states in ZnO and
other related systems. The semicore d states are even more

localized than the oxygen p states. We find that the
Coulomb-hole energy for the Zn d states is still not com-
pletely converged even with 3000 conduction bands in-
cluded in the calculation. In addition, the cutoff energy
(80 Ry) for the dielectric matrix used here does not seem to
be high enough for an accurate account of the correlation
effects for the d states. We believe that many of the
previous quasiparticle calculations (including various
forms of the self-consistent GW approach) involving lo-
calized states may need to be reexamined. Our results on
the semicore d levels in ZnO and other related systems will
be reported in a follow-up publication.
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