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We identify the mechanism of energy dissipation relevant to spin-sensitive nanomechanics including

the recently introduced magnetic exchange force microscopy, where oscillating magnetic tips approach

surface atomic spins. The tip-surface exchange couples spin and atom coordinates, leading to a spin-

phonon problem with Caldeira-Leggett–type dissipation. In the overdamped regime, that can lead to a

hysteretic flip of the local spin with a large spin-dependent dissipation, even down to the very low

experimental tip oscillation frequencies, describing recent observations for Fe tips on NiO. A phase

transition to an underdamped regime with dramatic drop of magnetic tip dissipation should in principle be

possible by tuning tip-surface distance.

DOI: 10.1103/PhysRevLett.105.146103 PACS numbers: 68.35.Af, 68.37.Ps, 75.50.Ee, 75.80.+q

In a recent intriguing magnetic exchange force micros-
copy experiment [1], an exquisite magnetic atomic force
sensitivity was demonstrated for an atomically sharp Fe
magnetic tip over the (001) surface of antiferromagnetic
NiO [2]. Besides showing a different force for the two
oppositely polarized surface Ni atoms—well explained
by the Fe-Ni exchange available from electronic structure
calculations [3]—the results also show a surprisingly dif-
ferent mechanical dissipation, with a gigantic excess of
order 15–20 meV per cycle in the antiparallel Fe-Ni spin
configuration, as compared to the parallel one.

There is no existing theory of spin-dependent tip dis-
sipation that one could use to understand not just this result
but magnetically and site sensitive dissipation phenomena
in general. Here we propose to use the magnetic exchange
force microscopy study as a starting point. We search for a
mechanism that (i) can yield a magnetic dissipation of very
large magnitude, similar to exchange energies, per cycle,
(ii) is sensitive to the spin direction, and stronger for
(nearly) antiparallel spin than a parallel one, (iii) works
down to the lowest frequencies. Particularly puzzling is in
fact the contrast between a large dissipation magnitude and
the very low tip oscillation frequency (!tip � 160 kHz). At

such a low frequency, one could expect a nearly adiabatic
response, with very little mechanical energy transferred
from the tip to some low-frequency excitations such as
magnons, or perhaps phonons. Antiferromagnetic mag-
nons, the first obvious choice, are immediately ruled out
since, owing to strong dipolar anisotropy, the antifer-
romagnetic spin-wave dispersion of NiO has a bulk gap
�� 1:5 meV� 0:36 THz [4], and one at least as large at
the surface [5–7]. As a result, the oscillatory perturbation
exerted on the surface spin is completely adiabatic—
!tip � � by more than 6 orders of magnitude—and direct

dissipation in the spin-wave channel vanishes. Other
strictly magnetic dissipation mechanisms involving

mesoscopic scale phenomena, such as domain wall motion
[8], also appear unapplicable to the atomic scale tip-sample
magnetic interaction. For example, a tip-induced magnetic
domain with oscillating boundaries could be invoked to
account for a low-frequency magnetic dissipation, but the
formation of such local domains is energetically unlikely,
given the localized nature of the tip perturbation:
Excluding a role of tip stray fields, simple model estimates
suggest that the spin deformation near a perturbed surface
spin should decay just a few atomic spacings away from
the tip edge. We are left with acoustic phonons, certainly
never gapped, both in bulk and at the surface. Here we
know, however, that acoustic dissipation of a localized
surface oscillation vanishes in linear response theory as a
high power of frequency [9]—the lattice can follow essen-
tially adiabatically and harmonically a sufficiently slow
and weak external perturbation. A large magnetic dissipa-
tion mechanism via phonons should therefore involve phe-
nomena far from linear response. In this Letter we describe
the mechanism which we believe is at work here, and show
that the nonlinear response is related to the attainment of a
strong coupling overdamped spin-phonon state very well
known in other contexts, giving rise to a single-spin hys-
teresis. That also suggests that by tuning down the pertur-
bation intensity, a phase transition could be crossed from
the overdamped to the underdamped regime, with a loss of
hysteresis and a dramatic drop of dissipation. Hopefully,
the present approach may serve as a prototype for nano-
scale magnetic dissipation.

Consider an oscillating Fe tip over a surface Ni spin ~Si.
All neighboring spins remain essentially unperturbed,
‘‘protected’’ as they are by the spin gap �. The potential
felt by an " Ni atom at a distance z below the Fe tip differs
from that felt by a # Ni [3], and one can define a spin
exchange potential VexðzÞ ¼ V##ðzÞ � V"#ðzÞ (assuming the
Fe tip to be # polarized). Vex can be estimated to yield an
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exchange force fex ¼ �@Vex=@z of �0:3 nN when the tip
edge is closer than 3 Å to the surface Ni [3]. This force
produces a small displacement uzðiÞ of the Ni atom from
its equilibrium position and will result in a potential of
the form �fexSzi uzðiÞ (neglecting an unimportant spin-

independent term). In terms of phonon creation (ayks) and
annihilation (aks) operators (ks being wave vector and
polarization of the phonon mode), we thus obtain a
coupling of the Ni spin to the Ni acoustic phonons of

the form Hspin phonons ¼ �z
i

P
ks�

ðiÞ
ksðaks þ ay�ksÞ, where

�ðiÞ
ks ¼ �fexeik�ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

8NM!ks

q
ezðksÞ, ezðksÞ being the eigen-

vector of the ks phonon mode. The equilibrium physics
of the spin is dictated by the small frequency behavior of
the crucially important spectral density [10,11] Jð!Þ ¼P

ks�ð!�!ksÞj�ksj2 ¼ ðfexÞ2 @

8MN

P
ks�ð!�

!ksÞjezðksÞj2=!ks. From the standard Debye form for the
low-energy acoustic phonons in three dimensions, we find
that the small-! limit of Jð!Þ is precisely Ohmic Jð!Þ ¼
@
2�!þ � � � with � ¼ ðfexÞ2 3@2

8Mk3T3
D

, where TD is the

Debye temperature. An estimate, with fex � 0:3 nN, gives
a value of � close to 1, which can be easily made >1 by a
slightly larger fex or by a better account of the (softer)
surface phonon modes. The natural Ohmic behavior of this
problem is a first important result, since that is by far the
most interesting case, studied for decades [10,11], and it
has been previously shown to arise in tip-surface interac-
tions [12]. Note that the Ohmic coupling � depends on the
square of the exchange force fex and is therefore depen
dent on the tip-atom distance z. We are thus led to the
physics of a single spin—the surface Ni over which the tip
is oscillating—in its prototypical form, that of a driven
Caldeira-Leggett (or spin-boson) Ohmic model. The model
is known to possess two regimes, one underdamped and
one overdamped, separated by a phase transition. In the
underdamped regime the spin motion is relatively un-
affected by the bath, and dissipation is small. In the
overdamped regime—attained at �> 1 [11]—the spin
is effectively ‘‘trapped’’ by the bath as schematically
portrayed in Fig. 1.

The tip-induced spin-flip processes involve in the over-
damped case a new time scale ��1 that can be much longer
than the external driving period 2�!�1

tip . Once � � !tip,

magnetic dissipation will arise from a sort of single-spin
hysteresis, similar to effects known in bistable models [13].
The overdamped model predicts three crucial results re-
garding spin-dependent dissipation. First, dissipation is
quantitatively large, because the order of magnitude of
the hysteresis loop area is generally set by the tip-surface
magnetic exchange, itself a large energy scale �50 meV
[3]. Second, dissipation will be strong when the magnetic
tip is over a surface atom with antiparallel spin (left-hand
side of Fig. 1), and negligible over one with parallel spin
(right-hand side of Fig. 1), because no tip-induced spin flip
is provoked in the latter. Third, hysteretic dissipation
should depend relatively weakly on !tip, and disappear

only when the tip frequency is lowered below some very
low frequency ��.
To describe the action of the tip on a given spin, we

consider the driven spin-boson model (@ ¼ 1):

H ¼ "0
2
�z �

�
"ðtÞ
2

�z þ �ðtÞ
2

�x

�
� X̂

2
�z

þX
�

!�

�
by�b� þ 1

2

�
; (1)

where �z and �x are the Pauli matrices, by� and b� are
creation and annihilation operators for the mode � of the

phononic bath of frequency!�, X̂ ¼ P
���ðb� þ by�Þ is the

bath operator to which �z is coupled, �� being the pre-
viously introduced couplings, such that Jð!Þ ¼ P

��ð!�
!�Þj��j2 ¼ �!þ � � � . (The slight time dependence of �
during the tip oscillation is neglected.) In the NiO surface,
"0 represents nearest-neighbor exchange (positive and
large) plus all sources of magnetic anisotropy (including
dipolar contributions), and z is the unperturbed direction of
the surface atom spin due to dipolar anisotropy (a h211i
direction). The external magnetic tip acts in the xz plane
[2] at an angle � off the z axis,

"ðtÞ ¼ hcos�sin2ð!tiptÞ; �ðtÞ ¼ h sin�sin2ð!tiptÞ: (2)

We will use � and �þ � to describe Ni spins of opposite
direction. The last term describes the free phonons. To
avoid problems with divergences, we have as usual a

high-frequency cutoff !c for the spectral density, Jð!Þ ¼
�!e�!=!c , with !c � h, kBT. The details of the solution
of this model, summarized below for the reader’s con
venience, are standard. The time evolution of the system
is described by a standard real-time path-integral approach
[10], taking care of the bath degrees of freedom through the
influence-functional method [14] and applying the so-
called noninteracting-blip approximation, valid in the �>
1 overdamped case for the observables of our interest
[11,15]. Actually, the same overdamped behavior could
be achieved in the�< 1 regime, but only for certain values
of perturbation and temperature. In terms of the free

FIG. 1 (color online). Effective potential felt by the spin under
the effect of the bosonic bath for tip over spin-up and spin-down
configuration.
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correlation function of the X operator gð	Þ ¼ Sð	Þ þ
iRð	Þ, with Sð	Þ ¼ R1

0 d! Jð!Þ
!2 ð1� cos!	Þ cothð
!2 Þ

and Rð	Þ ¼ R1
0 d! Jð!Þ

!2 sin!	 (where 
 ¼ 1=kBT), we

can compute the quantities F0ðtÞ ¼ �2ðtÞ�R1
0 d	e�Sð	Þ sin½Rð	Þ� sin½"ðtÞ	� and G0ðtÞ ¼ �2ðtÞ�R1
0 d	e�Sð	Þ cos½Rð	Þ� cos½"ðtÞ	�. From these, as shown

in [16], in the overdamped regime �> 1 and with a low-
frequency driving, the z component of the spin obeys a
simple rate equation

d

dt
h�zðtÞi ¼ �G0ðtÞh�zðtÞi þ F0ðtÞ; (3)

that can be easily integrated. Applying the same procedure
to h�xðtÞi, we get similarly

d

dt
h�xðtÞi ¼ �G0ðtÞh�xðtÞi þ F0ðtÞ ~G0ðtÞ

�ðtÞ ; (4)

where ~G0ðtÞ is defined asG0ðtÞ, but with sin½"ðtÞ	� in place
of cos½"ðtÞ	�.

To uncover the new time scale, consider, e.g., the abrupt
switching on of a perturbation at t ¼ 0, with a constant
value �ðtÞ ¼ �"� "0 and �ðtÞ ¼ � thereafter. In this case
Eq. (3) describes an exponential relaxation towards the
equilibrium value h�zð1Þi ¼ �F0=G0 ¼ � tanhð12
 �"Þ
[11] with a decay rate � given, for low tempera-

tures, in terms of the � function: � ¼
ð��2 �"2��1=2�ð2�Þ!2�

c Þ½1þ �2�ð2��1Þð2��2Þ
3ð
 �"Þ2 �. In the over-

damped regime the relevant time scale ��1 can take large
values, mainly due to the large cutoff frequency !c being
raised to a large exponent. Even under a comparably slow
external perturbation the system can be out of its instanta-
neous equilibrium; and that is the origin of the hysteretic
behavior.

Consider now the two-level system of Eq. (1) under the
external perturbation in (2). Figure 2 shows the time evo-
lution of h�zi and h�xi for a system in the initial state
h�zi ¼ �1, as obtained by numerical integration of Eqs.
(3) and (4) using an adaptive Runge-Kutta algorithm [17].
The system can clearly respond to the perturbation in its
own time scale, yielding two different states when the
perturbation is increasing and decreasing, a clear hysteretic
behavior. The values of h�xðtÞi are orders of magnitude
smaller than those of h�zðtÞi due to the large !c. [This
result is related to the universal behavior of h�zðtÞi with
respect to !c as opposed to the nonuniversality of h�xðtÞi
[18].] The dissipated energy per cycle is

W ¼
Z 2�=!

0
dt

�
h�zðtÞi d"ðtÞdt

þ h�xðtÞi d�ðtÞdt

�
; (5)

which is the area of the hysteresis cycle in a (state-
perturbation) h�zðtÞi-�ðtÞ diagram. Figure 3 shows the
hysteresis cycle for the z component of perturbations
with different angles �, together with the angular depen-
dence of the hysteresis area (inset). When the tip and atom

spins are (even roughly) opposite, the action of exchange to
overturn the spin leads to a hysteresis loop and a large
dissipation; when they are nearly parallel, the loop collap-
ses and correspondingly the magnetic tip dissipation drops.
(Data for the x component, not shown, are negligible.)
We may finally address the frequency and temperature

dependence of the total magnetic dissipation. Loop areas
(in steady state) for different temperatures as a function of
frequency are shown in Fig. 4(a). There clearly is an
optimal frequency attaining maximal area. At excessive
tip frequencies the spin remains effectively frozen in its
trapped state; at very low frequencies the spin has plenty of
time to relax and follow adiabatically the equilibrium value
demanded by the tip: in both cases the loop area collapses.
The inset of Fig. 4(a) shows how the optimal frequency
increases with increasing temperature, reflecting the T
dependence of � shown in the forcing-free case. These
results are consistent with what is known in the context of
quantum stochastic resonance [19]. Figure 4(b) contains

FIG. 2 (color online). Time evolution of h�zi (black full line,
left-hand axis) and h�xi (dashed red line, right-hand axis) for
"0 ¼ 1, !c ¼ 20"0, � ¼ 2:1, h ¼ 1:5"0, � ¼ 0:6, !tip ¼
10�8"0, 
"0 ¼ 20. The dotted line shows the shape of the
external perturbation.

FIG. 3 (color online). Hysteresis cycle for the z component
of the external perturbation for different angles � (see legend)
for "0 ¼ 1, !c ¼ 100"0, � ¼ 2:1, h ¼ 1:3"0, !tip ¼ 10�12"0.

Inset: Angular dependence of the hysteresis area W.

PRL 105, 146103 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

1 OCTOBER 2010

146103-3



the same data in the form of P ¼ !W, the dissipated
power. At low frequencies P increases as a power law
(roughly !2), eventually reaching a plateau where the
dissipation levels off over a wide frequency range. Other
mechanisms will of course play a role at higher frequen-
cies, but hysteretic dissipation is the only relevant non-
linear one that survives down to experimentally relevant
low frequencies.

The magnetic dissipation per cycle produced by the
mechanism identified satisfies all desired requisites, since
it is (i) large, and of the same order of magnitude of the
antiferromagnetic exchange J � 15–20 meV, (ii) vastly
different for ‘‘up’’ and ‘‘down’’ Ni spins (assuming � ¼
35	, we get between the two a factor of 3� 10�4), and
(iii) effective down to very low frequencies, ��. Coming
to the Fe-NiO data, we can now attribute the experimental
dissipation of about 35 meVof the # -polarized tip oscillat-
ing over a # Ni spin to nonmagnetic mechanisms, that of
about 50 meVover an " Ni in terms of the same mechanism
plus a hysteretic magnetic dissipation W � 15 meV, im-
plying that the tip-surface coupling resulted in �> 1.

The strong dependence of that coupling on fex allows in
principle for a reduction of � and a phase transition from
overdamped to underdamped. In that case we would expect

the faster evolution time scale to suppress the hysteretic
behavior, dramatically reducing the magnetic dissipation.
In conclusion, our main novelties are that in surface

magnetic tip dissipation problems, energy dissipation should
be mostly mechanical and non-spin-wave, since spin waves
are generally gapped by anisotropy; that spin-dependent
coupling to surface atomic motion and to phonons can
lead to a sort of single-site magnetic hysteresis; and finally
that due to hysteresis the magnetic tip dissipation per cycle
can be as large as intrasurface exchange coupling, as is seen
experimentally. Further experimental possibilities will be to
test the frequency, temperature, and � angle dependencies.
Last but not least, the modification of the coupling parame-
ter with the tip-sample interaction force should in principle
cause a phase transition from an overdamped to an under-
damped regime, with a strong suppression of dissipation at
large distances and weaker couplings. We believe that these
concepts should be of more general impact beyond the
simple case treated here.
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