PRL 105, 146102 (2010)

PHYSICAL REVIEW LETTERS

week ending
1 OCTOBER 2010

Occurrence of Rotation Domains in Heteroepitaxy
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Heteroepitaxy can involve materials with a misfit of crystal structure. Rotation domains in the epilayer
are a fundamental consequence. We derive a general expression for their (minimum) number which is
determined by the mismatch of the rotational symmetries of the substrate and epilayer. In the case of a
mismatch of rotational symmetry, the number of rotation domains of material A on material B is different
from that of B on A. A larger number of rotation domains can occur due to domain structure or nearly
fulfilled additional symmetries of the substrate surface.
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Heteroepitaxy is a prerequisite step for the fabrication of
the active structures of many modern solid-state electronic
and photonic devices. Heteroepitaxy is also used for the
growth of such structures on substrates. Typical examples
of epitaxy on heterosubstrates are GaN on Al,O5 and GaAs
on Si.

Generally, the substrate and epilayer can be quite dis-
similar and belong to different crystal structures and have
different lattice parameters. The mismatch of translational
symmetry (lattice constants) leads to specific defects (dis-
locations). This phenomenon has been investigated exten-
sively, and the concept of domain epitaxy explains and
allows for a variety of advanced matching conditions by
defined in-plane rotation of lattices [ 1-4]. Here, we treat the
effect of the mismatch of rotational symmetry, leading to
rotation domains as a consequential defect. Rotation do-
mains can occur already in bulk materials; see, e.g., [5].
Here we restrict ourselves to materials that are single phase
and single domain in bulk form. The substrate surface and
epilayer shall have C,, and C,, symmetry, respectively, with
regard to the surface normal, possible values being n, m €
{1,2,3,4,6} [6].

Rotation domains in the epilayer are domains with the
same crystallographic direction along the growth direction
but different in-plane azimuthal orientation. They are a
Jfundamental consequence of the mismatch (n # m) of
rotational symmetry across the heterointerface. The occur-
rence and orientation of rotation domains has been reported
in the literature for several specific material combinations.
A unified picture and generalized theoretical treatment is
missing; even in the extensive review of Pond [4] on the
crystallography of domain formation and dislocations in
layered systems, only the case of zinc blende on a diamond
structure (GaAs on Si or Ge) has been treated. Using group
theory, we derive here a general formula for the (minimum)
number of rotational domains that applies to all possible
cases of rotational mismatch in heteroepitaxy.

The presence of rotation domains necessarily introduces
large-angle (tilt) grain boundaries into the epilayer. From a
practical standpoint, detrimental consequences may result
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for the epilayer properties (such as larger surface rough-
ness, inhomogeneous strain and impurity distribution, re-
duced carrier diffusion length, mobility and lifetime, larger
concentration of deep levels, or lower efficiency of radiative
recombination), depending on the distribution of domain
sizes. Subsequently, device properties (such as breakdown
voltage, leakage current, noise, cutoff frequency, or quan-
tum efficiency) are adversely effected.

Hexagonal GaN(00.1) on twofold symmetric AIAs(001)
exhibits only a single domain [7] (Ngp = 1). Hexagonal
Zn0(00.1) on Si(001) leads to two domains in the epilayer,
rotated 90° (or due to the 60° symmetry rotated apparently
30°) against each other [8]. A notable case with Ngp = 3
is fourfold symmetric (tetragonal) BTO(001) on hexagonal
Zn0O(00.1) [Figs. 1(a) and 1(c)] [9]. The domains are
rotated 30° against each other. The inverted case of ZnO
(00.1) on BTO(001) yields a different number of rotation
domains [Figs. 1(b) and 1(d)] Ngxp = 2. They are rotated
90° against each other [10]. The orthorhombic BiFeO;(001)
with C; symmetry on Si(001) leads to Nyp = 4 domains,
rotated 90° against each other [11].

All such cases can be explained with the mismatch of
rotational symmetry at the interface, resulting in

Ngp = lem(n, m)/m. (D

The substrate is invariant under cyclic group C, with
rotation angles ¢; = 2mi/n, the epilayer crystal under
cyclic group C,, with ¢p; = 27j/m, i and j being integers.
The epilayer orientation is thus invariant for rotation angles
¢+ ¢;=2m(i/n+ j/m) = 2mk/lem(n, m) = i, with
lem(n, m) being the least common multiple of n and m, and
k being an integer. Bézout’s theorem yields that, for each %,
values i and j exist [12]. Thus the rotations with angles i,
form a cyclic group C’ of order lcm(n, m). One possible
rotation domain is given by the subgroup C,, of C'. The
number of equivalent rotation domains Nyp is given by the
number of equivalent classes (or orbits) of order m (index
of C,, in (') yielding (1) with Lagrange’s theorem [13].
For (n, m), there are a total of 25 possible combinations
(Table I): 12 such combinations yield a single domain, 5
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FIG. 1 (color online). (c) High-resolution x-ray diffraction ¢
scan of 250 nm BaTiO5(001) thin film (BTO) on ZnO(00.1)
(550 nm ZnO thin film on a-plane Al,03). ZnO shows the
sixfold symmetry of its (10.1) planes (¥ = 61.61°, 20 =
36.254°). The BaTiO; (101) (¥ = 45.28°, 20 = 31.483°) ex-
hibits 12 30°-spaced peaks indicating that the C,-symmetric
(tetragonal) layer aligns in-plane within three rotational domains
as shown schematically in (a). (d) High-resolution x-ray diffrac-
tion ¢ scan of 800 nm ZnO(00.1) thin film on an 800 nm BTO
(001) layer on a STO(001) substrate. BTO exhibits the fourfold
symmetry of its (101) planes. The ZnO (10.1) planes exhibit 12
30°-spaced peaks indicating that the hexagonal layer aligns in-
plane with two rotation domains as shown schematically in (b).

combinations yield Ngxp = 2 rotation domains, 5 combi-
nations result in three, and 2 cases in four rotation domains.
Six domains occur for one combination. If n = m, the
number of rotation domains is 1. For all other combinations
(n # m), the inverse material sequence yields a different
number of rotational domains. The approach here is sim-
plified with respect to the mirror symmetries of the sub-
strate; in a forthcoming publication, we discuss all 150
cases arising from the ten 2D point symmetries.

The case n = 4, m = 6 is particularly interesting, e.g.,
cubic (or tetragonal) BTO(001) and hexagonal ZnO(00.1).
It is a situation where neither the A/B nor the inverted B/A
(n = 6, m = 4) material sequence exhibits a single do-
main. Recent advances in epitaxial ferroelectric gates on
semiconductor channels for transparent and programmable
transistors [10,14] require the growth of these materials for
the active structure. Depending on whether a top gate or
bottom gate device design is chosen, the epitaxial hetero-
structure is BTO on ZnO or ZnO on BTO, respectively.

TABLE I. Number of rotational domains Nyp according to
Eq. (1); n and m denote the C, and C,, rotational symmetries
of the substrate and epilayer, respectively.

n\m 1 2 3 4 6
1 1 1 1 1 1
2 2 1 2 1 1
3 3 3 1 3 1
4 4 2 4 1 2
6 6 3 2 3 1

n = 6 and m = 2. This could be realized by a zinc blende
(001) layer on a hexagonal substrate. Such a combination
also often grows with the epilayer in [111] orientation, e.g.,
AIN(111) on Al,05(00.1) [17]. The results in Ref. [18]
about In,05(001) and InN(001) on c-plane Al,O; are,
however, inconclusive with regard to rotation domains. For
twofold symmetric orthorhombic B-FeSi,(101) [or (110)]
on Si(111) indeed three rotation domains are observed
[19]. A case of n =6 and m = 1, leading to Nxp = 6,
could be orthorhombic U3;Og on c-plane Al,O3. In
Ref. [20], indeed a sixfold symmetry of the U;Og epilayer
is found; however, it is attributed rather to a new, epitax-
ially induced hexagonal symmetry than to the presence of
six rotation domains of orthorhombic material.

An extreme case poses an amorphous substrate; here the
epilayer can take any azimuthal orientation. If it grows in
columnar grains, the azimuthal orientation from grain to
grain largely fluctuates [21], giving it effectively C, symmetry.

As can be seen from the above examples and Table II,
Eq. (1) describes the number of rotation domains correctly
for many epitaxial systems. We have not found an experi-
mental example in our work and the literature where Nyp is
smaller than given by Eq. (1). It can, however, be larger than
that given by (1) due to (i) domain structure or (ii) additional
“nearly fulfilled” symmetries of the substrate surface. In
the following, we discuss a few prominent examples.

A well-known case of crystal structure misfit is zinc
blende on diamond with the formation of antiphase
boundaries [4], e.g., for InP(001)/Si(001) [28]. The [001]
direction in bulk Si and InP has fourfold symmetry.
However, a Si(001) surface with monolayer (a,/2) steps
exhibits two C, domains (on the terraces), while the zinc
blende (001) surface has uniformly twofold symmetry (C,).
The antiphase domains in the zinc blende material are
inversion domains and can be considered as two rotation
domains (Ngp = 2) with their [110] or [110] direction
aligned with the Si [110] direction, respectively. A similar
case arises for hexagonal ZnO(00.1) on Si(001). The two
C, domains on the substrate lead to two ZnO domains not
related by inversion, rotated 90° against each other [8].

Hexagonal ZnO(00.1) on Al,05(00.1) often shows the
expected single domain growth [3,45]. However, this sys-
tem has also been observed to exhibit two rotation domains
[31,32] with a relative azimuth of 30°. The additional
second domain nucleates only under certain growth con-
ditions (oxygen pretreatment) that generate monolayer
steps and a mix of Al- and O-terminated surface. This
situation is conceptually similar to the Si(001) surface
with monolayer steps offering two C, domains, rotated
90° against each other. Even the occurrence of three
rotation domains (30° and 21.8°) has been observed [47]
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TABLE II.

Various epitaxial systems with match (n = m) and mismatch (n # m) of rotational symmetry. Ngp denotes the number

of rotation domains expected from Eq. (1). The number d of domains present on the substrate surface is given as a number in round
brackets ( X d) in the first column. Column “Exp.” hosts the number of experimentally observed domains.

n m Substrate Epilayer Nrp Exp. Ref.
1 1 Al,05(01.2) ZnO(11.0) 1 1 [22,23]
1 1 Al,05(01.2) SW-CNT 1 1 [24]

1 2 Al,05(01.2) InN(001) 1 1 [25]
1 3 Al,05(01.2) CeO,(111) 1 2° [26]

1 4 Al,05(01.2) Ce0,(001) 1 1 [26]
2 1 Al,05(11.0) SW-CNT 2 [24]
2 2 GaAs(001) AlAs(001) 1 1 [27]
2 2 Si(001)BL InP(001) 1 1 [28]
2(X2) 2 Si(001)ML InP(001) 1 2% [28]
2 3 GaAs(001) MgO(111) 2 [29]
2 4 GaAs(001) MgO(001) 1 1 [30]
2 6 AlAs(001) GaN(00.1) 1 1 [7]

2 6 Al,05(11.0) Zn0(00.1) 1 1 [31,32]
2(X2) 6 Si(001) Zn0O(00.1) 1 2% [8]

3 1 Si(111) SW-CNT 3 6° [33]
3 2 Si(111) FeSi,(101) 3 3 [19]
3 3 Si(111) Ge(111) 1 1 [34]
3 4 Si(111) FeSi,(001) 3 6° [35]
3 6 Si(111) Zn0O(00.1) 1 1 [36]
4 1 STO(001) BFO(001) 4 4 [11]
4 1 MgO(001) SW-CNT 4 4 [37]
4 2 NaCl1(001) Zn0(21.0) 2 2 [38]
4 2 STO(001) ZnO(11.0) 2 4° [39]
4 3 MgO(001) CuCl(111) 4 4 [40]
4 4 NaCl1(001) AgCl1(100) 1 1 [41]
4 6 BTO(001) Zn0O(00.1) 2 2 [42], Fig. 1
6 1 Al,05(00.1) U504(001) 6 6° [20]
6 2 Zn0O(00.1) LiGa0,(001) 3 3 [43]
6 3 Zn0O(00.1) MgO(111) 2 2 [16]
6 4 Zn0O(00.1) BTO(001) 3 3 Fig. 1
6 6 Zn0O(00.1) GaN(00.1) 1 1 [44]
6 6 Al,05(00.1) Zn0(00.1) 1 1 [45,46]
6(X2) 6 Al,05(00.1) Zn0O(00.1) 1 2% [31,32]
6 (X3) 6 Al,05(00.1) Zn0O(00.1) 1 3? [47]
00 6 SiO, Zn0O(00.1) 0 o0 [8,21]

“Indicates larger number of domains than (1) due to domains on the substrate surface.

Indicates additional domains due to nearly fulfilled symmetries. BTO denotes BaTiO5; STO, SrTiO5; BFO, BiFeO,; SW-CNT, single-
wall carbon nanotube; Si(001)ML denotes a Si(001) surface with monolayer steps (height of a,/2), and Si(001)BL denotes a Si(001)
surface with bilayer steps (height of ag). Al,05(11.0) is the a plane; Al,05(01.2) is the r plane.

“Indicates unsure assignment.

for hydrogen pretreatment. Ga pretreatment [47] or nitri-
dation of the sapphire substrate [48] eliminates such addi-
tional domains.

In Ref. [35], three rotation domains are observed as
expected for B-FeSi,(100) on Si(111), aligning the epi-
layer [010] with Si(110). Under certain growth conditions
six rotation domains, separated by 15°, are observed, add-
ing alignment of the epilayer [011] with Si(101) [35].
These two in-plane alignments seem to have similarly
favorable energetics.

ZnO(11.0) [22], InN(001) [25], and Si(100) [49] all grow
as single domain films on C;-symmetric Al,05(01.2)
(r plane). CeO,(111) on Al,05(01.2) is also expected to

grow as a single domain but is observed to exhibit two
domains with the relative azimuth of 85.7° [26]. This
occurs because the r plane of sapphire is “pseudocubic”
and offers another similar, almost perpendicular direction
for nucleation, aligning the [110] direction of CeO, with
[22.1] and [24.1] of AlL,O;. For the growth of
Cy-symmetric ZnO(11.0) on C4-symmetric NaCl(001),
two domains occur as expected [38]. On SrTiO5(001), a
second set of two domains appears, rotated 4° from the first
set due to two nearly coincident site lattices [39].
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BTO/ZnO and ZnO/BTO samples. This work has been
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