
Dynamical Conductivity at the Dirty Superconductor-Metal Quantum Phase Transition

Adrian Del Maestro,1 Bernd Rosenow,2 José A. Hoyos,3 and Thomas Vojta4
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We study the transport properties of ultrathin disordered nanowires in the neighborhood of the

superconductor-metal quantum phase transition. To this end we combine numerical calculations with

analytical strong-disorder renormalization group results. The quantum critical conductivity at zero

temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated

scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to

higher dimensions and discuss implications for experiments.
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Electrical transport in low-dimensional strongly fluctu-
ating superconductors has been the subject of intense
experimental investigation for almost half a century [1].
Recently, advances in experimental techniques have al-
lowed for the fabrication of ultrathin metallic nanowires
having diameters smaller than the bulk superconducting
coherence length, but large enough to include many trans-
verse channels for electronic conduction. Resistance mea-
surements have shown that the thicker among these wires
exhibit a well-defined phase transition from a resistive to a
superconducting state with decreasing temperature, while
thinner wires appear to remain resistive down to the lowest
temperatures measured [2–6].

It has been proposed [7–10] that these experiments may
be understood in terms of a superconductor-metal quantum
phase transition (SMT) driven by pair-breaking interac-
tions, possibly due to random magnetic moments trapped
on the wire surface [11]. A description of this transition is
provided by a theory, first proposed by Feigel’man and
Larkin [12], of a complex Cooper pair order parameter
whose fluctuations are damped by decay into unpaired
electrons [13–17].

As the nanowires are prone to random variations in
diameter and because of the random positions of the pair-
breaking moments, quenched disorder plays an important
role. The thermodynamics of the disordered SMT has been
analyzed both analytically [18] and numerically [10] in the
relevant case of one space dimension. It is governed, for
any nonzero disorder strength, by a nonperturbative
infinite-randomness critical point (IRCP). This IRCP is in
the same universality class as the magnetic quantum criti-
cal point of the random transverse-field Ising chain despite
the fact that the two systems have different symmetries:
The clean transverse-field Ising chain can be described by
relativistic free fermions (and, therefore, dynamical expo-
nent z ¼ 1) whereas the clean SMT is described by over-
damped O(2) fluctuations with z ¼ 2. The homology lies

in the marginal dynamics of finite size clusters in both
models [19] which are the famous rare regions of Griffiths-
McCoy physics [20].
Many asymptotically exact results for the random

transverse-field Ising chain [21,22] apply directly to the
SMT via universality. The IRCP is characterized by acti-

vated dynamical scaling: L� � ½lnð�0=�Þ�1=c . Here,� is
the characteristic energy of the order-parameter fluctua-
tions on length scale L�, �0 is a high-energy reference
scale, and c ¼ 1=2 is known as the tunneling exponent.
The exponential length-energy relation implies that the
dynamical exponent z is formally infinite. Moreover, the
magnitude of the order-parameter fluctuations � also
scales logarithmically with energy, �� � ½lnð�0=�Þ��,
where the cluster exponent � ¼ ð1þ ffiffiffi

5
p Þ=2 is the golden

ratio. Approaching criticality, the correlation length
diverges as �� j�j�� where � ¼ 2 and � measures the
relative distance to the critical point.
In this Letter, we study experimentally important trans-

port properties at the pair-breaking SMT of disordered
nanowires. We report both analytical and numerical calcu-
lations of the zero-temperature finite-frequency
Aslamazov-Larkin [23] fluctuation corrections to the con-
ductivity �ð!Þ. At criticality, the real part of the conduc-

tivity diverges as �0ð!Þ � ½lnð!0=!Þ�1=c with vanishing
frequency! (!0 is a reference frequency). Off criticality, it
satisfies the unconventional activated scaling form

�0ð�;!Þ ¼ 4e2

h

�
ln
!0

!

�
1=c

��

�
��c ln

!0

!

�
; (1)

where��ðxÞ is a universal scaling function. In the remain-
der of this Letter, we sketch the derivation of these results
and discuss their experimental implications.
We begin by introducing a one-dimensional continuum

model of Cooper pairs in the presence of Ohmic dissipation
and disorder at T ¼ 0 [7,8,10,18]
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Here, ~�ðx; !Þ is the Fourier transform of �ðx; �Þ, a com-
plex superconducting order parameter at position x and
imaginary time �. We have explicitly included the random
spatial dependence of all coupling constants. Stability and
causality constrain u, 
ðxÞ> 0, and we may choose a
gauge where DðxÞ> 0. The quantum phase transition is
tuned via � � �� �c [10].

To proceed, we use a lattice discretization of the
continuum action (2) in the limit of a large number of
order-parameter components. This limit has no impact on
the character of the critical point [10,18] and leads to a
quadratic action

S 0 ¼
X
i;j

Z d!

2	
~��
i ð!ÞðMij þ j!j�ijÞ ~�jð!Þ; (3)

where the coupling matrix Mij � ðDi=
ffiffiffiffiffiffiffiffiffiffi

i
j

p Þ�2
ij þ

ðri=
iÞ�ij (with �ij the discrete nearest neighbor

Laplacian) must be determined self-consistently by solving

ri ¼ �i þ ðu=
iÞhj�ið�Þj2i and ~�ið!Þ ! ~�ið!Þ= ffiffiffiffiffi

i

p
has

been rescaled. Note that the full effects of disorder can be
realized while fixing 
i ¼ 
 to be constant [24].

We are now in a position to directly evaluate the
dynamical conductivity via the Kubo formula [25]

�ð!Þ ¼ � i

@!

�X
i;j

Z
d�hJið�ÞJjð0Þiei!� �D

�
i!!!þi�

;

where the current is given by Jjð�Þ ¼
ð2ie=
@ÞDj½��

j ð�Þ�jþ1ð�Þ ���
jþ1ð�Þ�jð�Þ� with dia-

magnetic contribution D ¼ ð8e2=
@ÞPiDihj�ið0Þj2i. The
Kubo formula can be evaluated by employing the spectral
decomposition of M in terms of its eigenvector Vij and

accompanying diagonal eigenvalue Eij ¼ �i�ij matrices

defined by
P

kMikVkj ¼ Vij�j. The resulting real part of

the conductivity reads

�0ð!Þ ¼ 8e2

h

X
a;b

X
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where
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�
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2
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The validity of the scaling form (1) can be tested via a
full numerical evaluation of Eqs. (4) and (5). This is
possible by exploiting an efficient algorithm for computing
the self-consistent pairing eigenmodes of S0 for large
system sizes [10]. We have evaluated the conductivity (4)
for chains of various length with up to 128 sites averaged
over 3000 disorder realizations. For clarity, we limit our
analysis to the largest size, L ¼ 128, as the extrapolation to
the thermodynamic limit L ! 1 is nontrivial due to the
crossover between � and L for the range of � considered
here. The results are displayed in Fig. 1.
For probe frequencies !much larger than the character-

istic fluctuation energy scale !0 of the chain, we fully
saturate all quantum dynamics and observe a trivial
�0ð!Þ � 4e2=ðh!2Þ conductivity. On the other hand, for
! � !0, �

0 appears to be suppressed by a �-dependent
exponent. As we approach criticality (� ! 0) the func-
tional form of the average conductivity is not easily ascer-
tained from Eq. (4) due to the softening of critical modes,
but the apparent disappearance of this exponent is fully
consistent with the scaling theory in Eq. (1).
The predictions of Eq. (1) can be more thoroughly

confirmed by searching for consistent scaling of the data

shown in Fig. 1 after dividing by ½lnð!0=!Þ�1=c and re-
plotting as a function of the dimensionless scaling variable
x � ��c lnð!0=!Þ. We find excellent data collapse over 5
orders of magnitude as shown in Fig. 2. From the scaled
data, we extract the universal prefactor of the conductivity
at the critical point, ��ð0Þ ¼ 0:70ð4Þ. Furthermore, an
empirical analysis of the numerical scaling function in

Fig. 2 suggests that ��ðx ! 1Þ � x��e�Ax where A�
Oð1Þ. The relevant limits of �ðxÞ can also be inferred by
appealing to the naive scaling prediction that in d ¼ 1 the
conductivity should be equal to 4e2=h multiplied by a
length. Activated dynamical scaling dictates that at criti-
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FIG. 1 (color online). The disorder averaged real conductivity
for chains of 128 sites as a function of frequency measured in
terms of a UV cutoff !0 for different values of the distance from
the critical point, �.
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cality, lengths scale like ½lnð!0=!Þ�1=c whereas in the
Griffiths phase the relevant length scale is the correlation
length �� j�j��, fixing the x-dependent power in front of
the exponential in ��ðx ! 1Þ in order to cancel the
logarithmic prefactor in Eq. (1).

Let us now turn to an analytical derivation of the dynami-
cal conductivity. Near an IRCP, the conductivity will be
dominated by large rare regions which are locally in the
superconducting phase, i.e., by small clusters with excep-
tionally strong linksD and typically small gaps r. In the low
frequency limit, the effective links and gaps of these clusters
can be quantified by a renormalization group analysis [18]
that we invoke later. For now, we approximate each domi-
nant cluster as a single two-site system with r1;2 being the

effective local gaps andD the effective link strength. In such
a simple model, the conductivity Eq. (4) can be evaluated
exactly, resulting in

�0
2 site ¼

8e2D2‘2


2!
K12ð!Þ; (6)

where the eigenvalues of the 2� 2 coupling matrix are

2�1;2 ¼ ½D=
þ ðr1 þ r2Þ=
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD=
Þ2 þ ðr1 � r2Þ2=
2
p �

and we have introduced ‘ as the length of the link connect-
ing the two sites. Because of the presence of the factorD2 in
Eq. (6), the average over the contributions of all two-site
clusters will be dominated by those with an anomalously
large links D 	 r1;2. Hence, we may evaluate the conduc-

tivity by averaging

�0ð�Þ ¼ n�
Z �

0
dD

Z 1

0
d‘PðD; ‘Þ

Z D

0
drRðrÞ�0

2 site; (7)

where� ¼ 
! is the energy scale atwhich effective clusters
with gap r connected by links of magnitude D and length ‘

appear with probability density RðrÞPðD; ‘Þ, and n� is the
density of such clusters. The final step consists of using the
asymptotic value ofK12ð!Þ �!�1 ln½�=r�, in the strong-
disorder limit and�,D 	 r, where r ¼ ðr1 þ r2Þ=2. Using
the values of PðD; ‘Þ, RðrÞ and n� at criticality [21,22]:
PðyÞ ¼ R

d‘Pðy; ‘Þ ¼ e�y, with y¼ lnð�=DÞ= lnð�0=�Þ,
RðyÞ ¼ PðyÞ as well as the relation n�1

� � h‘i �
½lnð�0=�Þ�1=c between density and average separation of

clusters, we arrive at �0 � n�hðD=�Þ2‘2ihlnð�=rÞi �
½lnð�0=�Þ�1=c , where 1=c ¼ 2 recovering Eq. (1) at criti-
cality, where ��c lnð�0=�Þ!0. Correlations between the
links D and their lengths ‘ have no effect on the leading
logarithmic divergence of this result at criticality. The analy-
sis of Eq. (7) in the metallic and superconducting Griffiths
phases crucially depends on the careful treatment of the
correlations between ‘ and D. The resulting expressions
are quite involved and will be discussed elsewhere [26].
We now discuss a subleading correction to the scaling of

�0ð!Þ. In Eq. (7), the dissipative z ¼ 2 dynamics causes the
relation between energy � and the measured frequency !
to have a logarithmic correction [18] � ¼ 
0��!, where

0 is the bare dissipative coupling and �� is the mean
value of superconducting order-parameter fluctuations. At
criticality �� � ½lnð�0=�Þ�� and lnð�0=�Þ ¼ lnð!0=!Þ
up to logðlogÞ corrections. In the metallic Griffiths phase,
where presumably any real experiments on metallic nano-

wires would take place, �� � ��c ð1��Þ lnð�0=�Þ and the
logarithms of energy and frequency are no longer simply
equivalent. However, the exact value of�� can be obtained
from the imaginary part of the dynamical order-parameter
susceptibility [10,18], and its inclusion leads to quantita-
tively better data collapse as we extend the scaling theory
of Eq. (1) deeper into the Griffiths regime [26].
In order to place the appearance of the link length ‘ in

Eq. (6) and the average of Eq. (7) on firmer footing, we
invoke the real space renormalization group technique of
Refs. [18,27], providing direct access to the renormaliza-
tion of the current operator. Starting with a chain described
by the effective action of Eq. (3), we proceed by search-
ing for the largest local coupling of the chain, � ¼
maxfri; Dig. Suppose (i) � ¼ r2, site 2 is then strongly
fluctuating and can be integrated out of the system leading
to an effective coupling ~D ¼ D1D2=r2 between sites 1 and

3. Their relative distance is given by ~‘ ¼ ‘1 þ ‘2, and the

total current through clusters 1–3 is ‘1J1 þ ‘2J2 ¼ ~‘ ~J ,
where ~J ¼ ð2ie=
@Þ ~D½��

1�3 ���
3�1�. If on the other

hand (ii) � ¼ D2, sites 2 and 3 are strongly coupled

forming an effective cluster ~2 in which the effective gap

is ~r2 ¼ r2r3=D2. The total current is then ‘1J1 þ ‘2J2 þ
‘3J3 ¼ ~‘1 ~J1 þ ~‘2 ~J2, where ~‘1 ¼ ‘1 þ 1

2 ‘2,
~‘2 ¼

1
2 ‘2 þ ‘3, ~J1 ¼ ð2ie=
@ÞD1½��

1�~2 ���
~2
�1� and ~J2 ¼

ð2ie=
@ÞD3½��
~2
�4 ���

4�~2�. After process (i) or (ii), the
energy scale � is lowered and the disorder of the effective
system is increased [21]. Iterating this procedure leads to
the probability distribution of gaps and links connecting
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FIG. 2 (color online). The disorder averaged real conductivity
scaling function �� as a function of the dimensionless scaling
variable x ¼ ��c lnð!0=!Þ for different values of � as criticality
is approached from above. The line is a guide to the eye showing
the probable functional form of �� (see text).
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the effective clusters as a function of energy [18] providing
formal justification of Eq. (7).

We now compare our results with the transport proper-
ties of other systems governed by infinite randomness. To
the best of our knowledge, only one other such system has
been studied: spin conductivity in the dimerized antiferro-
magnetic spin-1=2 chain [27]. At criticality, the spin con-
ductivity also diverges logarithmically, but with a weaker
power than here, and is found to obey the scaling form
�spinð!Þ � lnð!0=!Þ�spin½� lnð!0=!Þ�, where �spinðx !
0Þ 
 7=180 and�spinðx ! 1Þ � xe�2x. Although the ther-

modynamics of our system and the spin chain are funneled
into the same universality class by the disorder, their
transport properties are not universal because their under-
lying dynamics are different.

Finally, we highlight that the methods discussed here
should also apply in higher dimensions. Specifically, at
criticality, the system will also be governed by an infinite-
randomness critical point [18,22] but with different expo-
nents c , �, and�. The dynamical conductivity will likewise
be dominated by rare and locally superconducting strongly
coupled regions. Evaluating Eq. (7) immediately leads to

�0ð!Þ � ½lnð!0=!Þ�ð2�dÞ=c , since the spatial dimension en-
ters explicitly only via the density of clusters n� � L�d

� , and

the average conductivity of a two-site cluster h�0
2 sitei �

½lnð!0=!Þ�2=c . As an immediate consequence, in the limit
! ! 0, the critical conductivity vanishes for d > 2, and
becomes constant at d ¼ 2.

In conclusion, we have presented the numerically eval-
uated dynamical conductivity �0ð!Þ for a model believed to
describe the physics of disordered nanowires close to a
superconductor-metal quantum phase transition and placed
it in an analytical framework computed via the strong-
disorder renormalization group. We have shown that �0ð!Þ
diverges logarithmically as j ln!j2 at criticality and obeys
scaling in the metallic (Griffiths) phase with asymptotics
dictated by naive dimensional analysis of physical quantities.
Our results may be directly applicable to experimental trans-
port measurements on thin nanowires which remain metallic
as T ! 0, such as those reported in Ref. [6]. By studying
wires of varying thickness at low temperatures, it may be
possible to reach the critical regime where the logarithmic
divergence of the fluctuation correction to the conductivity
for!> T couldbe directly observed. Ind ¼ 2, we expect�0
to be frequency-independent, consistent with experiments in
disordered thin superconducting films (see, e.g., Ref. [28]).
Finally, by presenting solid predictions arising from an ef-
fective action of strongly repulsive dissipative Cooperons,
we lay open an avenue for the experimental investigation of
the efficacy of such models when applied to dirty low-
dimensional superconductors.
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