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Bumpiness in a magnetic field enhances the magnitude of the plasma viscosity and increases the rate of

the plasma flow damping. A general solution of the neoclassical toroidal plasma viscosity (NTV) torque

induced by nonaxisymmetric magnetic perturbation (NAMP) in the collisionless regimes in tokamaks is

obtained in this Letter. The plasma angular momentum can be strongly changed, when there is a small

deviation of the toroidal symmetry caused by a NAMP of the order of 0.1% of the toroidal field strength.
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It is known that the magnetic fields used in confining
plasmas are usually spatially nonuniform or bumpy. The
bumpiness of the fields increases the plasma viscosity and
consequently the rate of the plasma flow damping. When
the collision frequency is smaller than the bounce or transit
frequency of the particles that traverse through the bumpi-
ness of the fields, particles experience the resistance of
the field when they either reflect back or slow down by the
fields. This resistance enhances the plasma viscosity. The
underlying physics can occur in any magnetized plasmas
confined by the spatially nonuniform fields.

The magnetic field of a tokamak is designed to be
toroidally symmetric. Realistically, there is always a slight
nonaxisymmetric magnetic perturbation (NAMP) due to an
intrinsic error field, magnetohydrodynamics (MHD) per-
turbations in the plasma and external magnetic perturba-
tion applied to control edge localized modes (ELMs) [1,2]
and resistive wall modes (RWMs) [3]. In stellarators, the
plasma diffusion in collisionless regimes induced by the
helical magnetic field has been developed since the 1960s
[4]. The neoclassical viscosity can also be obtained by
solving the drift kinetic equation numerically [5].
However, the ordering of the NAMP in tokamaks is differ-
ent from that in stellarators. In the last few years, the
neoclassical toroidal plasma viscosity (NTV) theory in
different asymptotic limits of the collisionless regimes
[6–11] has been developed to describe the plasma momen-
tum dissipation induced by the NAMP field in tokamaks.

The importance of the NTV torque in momentum
confinement has been highlighted by the most recent ex-
perimental observations. Strong magnetic braking effect
without mode locking during the application of NAMP has
been observed in the experiments in tokamaks [12–15].
The NTV torque is a good candidate to explain the ob-
served braking effect.

The experimental regime in present tokamaks as well as
the International Thermonuclear Experimental Reactor

(ITER) [16] covers both the 1=� and �� ffiffiffi
�

p
regimes

and their transitions. Here, � is the collisionality. The
typical collisionality regime on DIII-D [13] and JET [15]
are close to the transition of 1=� and �� ffiffiffi

�
p

regimes.
Furthermore, particles with different energy are in different
collisionality regimes. In order to model the toroidal
plasma rotation with NAMP and compare it with the ob-
servation, we need to know the exact NTV solution in the
transition regimes, as well as in the asymptotic limits of
these collisionless regimes. However, there was no analytic
solution in the transition regimes yet.
Recently, one approximate analytic general expression

has been obtained by smoothly connecting the formula in
these different regimes by Shaing et al. [17]. Another
general analytic result has been obtained by using the
simple Krook collisional operator by Park et al. [18]. How-
ever, this cannot include the boundary layer physics [7].
In this Letter, one general solution of NTV torque in

these collisionless regimes in tokamaks is obtained by
numerically solving the linearized bounce-averaged drift
kinetic equation with pitch angle scattering collisional
operator. The NTV in the transition regimes can be mod-
eled with this method without additional approximations.
The magnetic field strength with NAMP can be

written as

B ¼ B0

�
1� � cos��X

n

bnð�Þein�
�
; (1)

whereB0 is themagnetic field strength on themagnetic axis,
� � r=R is the amplitude of the cos� component
of the equilibrium field caused by toroidicity, r and R are
theminor andmajor radius, respectively,� ¼ q�� � is the

drift angle, bn ¼ P
mbmne

iðm�nqÞ� is the nth Fourier har-
monic of the perturbation field, and bmn are the Fourier
coefficients of normalized perturbation field in (�, �)
coordinates on the distorted flux surfaces [6]. The equilib-

riummagnetic field can be expressed as ~B ¼ c 0
prV̂ �r�,
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where 2�c p is the poloidalmagnetic flux, V̂ � V=ð4�2Þ,V
is the plasma volume enclosed by the flux surface, and the

prime denotes the derivative to V̂. (V̂, �, �) are the Hamada
coordinates with Jacobin J ¼ 1.

The typical normalized collisionality �� � �=ð�3=2!tÞ,
satisfies ð�B=B� Þ3=2 � �� � 1 in most tokamak operational

regimes for present tokamaks as well as ITER. Here !t ¼
vt=qR0 is the transient frequency. The collisionless detrap-
ping or retrapping regime [8] and superbanana regime [10]
are not usually accessible. The bounce-averaged drift ki-
netic equation can be applied for describing the NTV in the
collisionless regimes in tokamaks.

The linearized bounce-averaged drift kinetic equation
[4,6,19] can be written as

!d�@�f1 þ!dV̂@V̂fM ¼ �d

2�
hLðf1Þib; (2)

where f1 is the perturbed distribution function, !d� and
!dV̂ are the bounce-averaged drift frequencies in the � and

V̂ direction, respectively, fM is the local Maxwellian dis-
tribution function, �d is the deflection frequency, hLib �
@�2 þ F@2

�2 is the bounce-averaged pitch angle scattering

collisional operator, F � 2½E=K � 1þ �2�, and h. . .ib de-
notes the bounce average. Kð�2Þ and Eð�2Þ are the elliptic
integrals of the first and second kind, respectively. For
trapped particles, the pitch angle �2 2 ½0; 1�. !d� ¼
�q!E �!B, in which q!E is the ~E� ~B drift frequency
and !B � !B0½2E=K � 1�x is the magnetic drift fre-
quency. !B0 is the magnetic drift of the deeply trapped
particles with x ¼ 1 and x ¼ v2=v2

t is the normalized
energy.

Without considering the coupling of different harmonics
of the perturbed radial drift in the superbanana orbits [10],

the magnetic flux surface averaged particle flux, � ¼
hR d ~vð ~vd � rV̂Þfic , from different harmonics of the per-

turbation field can be calculated separately. Here hAic �
1

4�2

H
d�

H
d�A is the flux surface average of A, and f is the

distribution function of the particles.
By changing the flux into quadratic form [6], the general

form of the � for the jth (j ¼ ions, electron) kind of
particles can be written as

�j ¼ 	jR
2
0

ffiffiffi
�

p
q2!2

tj

2
ffiffiffi
2

p
�3=2ejc

0
p

X
n


1;nðV� �!j
nc;nÞ; (3)

!j
nc;n � q

�
V� þ!�;j �!�;i þ 
2;n


1;n

!�T;j
�
; (4)


j;n � 1

2

Z 1

0
I�nðxÞðx� 5=2Þj�1x5=2e�xdx; (5)

I�n �
jnhbnibj2�2¼0

�d=ð2�Þ
Z 1

0
4KFðI1j@�2f1njÞ2d�2; (6)

where 	j and ej are the mass density and electric charge of

the jth kind of particles, respectively, V� � ~V � r� and

V� � ~V � r� are the contravariants of ion flow.
!nc is the general form of the so-called neoclassical
‘‘offset’’ rotation [13,20]. The diamagnetic frequencies

!� � 1
Neq

d
dc p

P, and !�T � 1
eq

d
dc p

T. I1 ¼ �d=ð2�Þ
I0

and I0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�d=ð2�Þ�2 þmax½ðn!d�Þ2�
p

. The perturbed distribution

function is expanded as f1ðV̂; �; �2; xÞ � �P
nf1nðV̂; �2Þ

ein�
jn!dV̂;nj�2¼0

I0
@V̂fM.

According to the relationship between the viscosity and
the particle flux [21], the general form of the induced
toroidal NTV torque density can be written as

TNTV ¼ �hR2ic ��1
NTV	iV

� ; (7)

��1
NTV ¼ h1=R2icR2

0

X
j¼i;e

X
n

ffiffiffi
�

p
q2!2

ti

2
ffiffiffi
2

p
�3=2

��������
Zi

Zj

��������
� 
1;nð1�!nc;n=V

� Þ: (8)

The nth Fourier component of Eq. (2) can be written as

I1hLðf1nÞib � iI2f1n þ iI3 ¼ 0; (9)

where I2 � n!d�=I0 and I3 � hbnib
hbnibj�2¼0

.

With the boundary conditions F@�2f1nj�2¼0 ¼ 0, and
f1nj�2¼1 ¼ 0 used in [6,7], Eq. (9) can be solved
numerically.
The analytic results of the pitch angle integral I�n in

different regimes can be obtained from the results in
[6,7,9,18]. They have been summarized as Eqs. (54), (55),
and (60) in [17]. To check the consistency of the NTV from
the numerical and the analytic solutions, it is only necessary
to compare the I�n in different asymptotic limits.
Figure 1 shows the numerical solutions of Eq. (9) for the

thermal particles x ¼ 1, with the n ¼ 1 magnetic pertur-
bation b1 cosð��Þ, b1 ¼ 10�3, � � m� nq ¼ 0:1. The
left subgraphs are real (blue solid) and imaginary (red
dashed) part of the numerical solutions of the perturbed
distribution function. The right subgraphs are the corre-
sponding numerical (blue solid line) I1j@�2f1nj. The
dashed red line in Figs. 1(b) and 1(d) are that from the
analytic solution. Figures 1(a)–1(f) are the results for non-
resonant particles with !B0 ¼ 0 and different normalized

collisionalities ��d0 ¼ ��dj�d=�¼1, here ��d � �d=ð2�Þ
jnq!Ej .

Figures 1(a) and 1(b) are the solutions in the 1=� regime
[6] with ��d0 ¼ 100. Figure 1(b) shows a good agreement
between the numerical result (blue solid) and analytic
result (red dashed) in this regime. Figures 1(c) and 1(d)
are the solutions in the �� ffiffiffi

�
p

regime [7] with ��d0 ¼
0:001. Figure 1(d) shows a good agreement between the
numerical result (blue solid) and analytic result (red
dashed) in this regime. The dash-dotted line in Fig. 1(d)
indicates the boundary of the collisional boundary layer. It
shows that the boundary layer gives the dominant contri-
bution. Figures 1(e) and 1(f) are the solutions in the
transition between the 1=� and �� ffiffiffi

�
p

regimes with
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��d0 ¼ 1. Figures 1(g)–1(j) are the results for resonant
particles with !d�j�2

0¼0:4 ¼ 0 by choosing !B0=ðq!EÞ ¼
�1:75. Figures 1(g) and 1(h) are the solutions in the super-
banana plateau regime [9] with ��d0 ¼ 0:001. It is shown
in Fig. 1(h) that the resonant part gives the dominant
contribution. Figures 1(i) and 1(j) are the solutions in the
transition between the 1=� and superbanana plateau re-
gimes with ��d0 ¼ 1.

Figure 2 shows the collisionality dependence of the pitch
angle integral Ikn for the thermal particles with x ¼ 1 from
the numerical solution (blue solid) and analytic solutions
by using the Krook operator (red dashed) [18] and
smoothly connected formula (black dash-dotted) [17].
Figure 2(a) shows the nonresonant case with !B0 ¼ 0
and Fig. 2(b) shows the resonant case with !B0=ðq!EÞ ¼
�1:75. The numerical results can well reproduce the re-
sults in the 1=�, �� ffiffiffi

�
p

, and superbanana plateau regimes.
The numerical results at the transition regime are different
from the results calculated from the smoothly connected
formula. There is a bump in the numerical results at the
transition between the 1=� and superbanana plateau re-
gimes. The difference at this transition shown in this figure
can be up to 50%. The solution by using the Krook operator
can only give the same results in the superbanana plateau
regime. It cannot include the boundary layer effect, and
hence, it cannot present the results in the

ffiffiffi
�

p
regime. The

results in the 1=� regime by using the Krook operator is
about twice as large as that by using the pitch angle
scattering operator.

The NTV torque has a strong dependence on the colli-
sionality. The NTV torque TNTV / N�T�, where � ¼ 0
and � ¼ 5=2 in the 1=� regime, � ¼ 3=2 and � ¼ 1=4 in
the �� ffiffiffi

�
p

regime, � ¼ 1 and � ¼ 0 in the superbanana
plateau regime. The radial electric field is related to the
plasma rotation via the radial force balance. Therefore, the
NTV torque has a complex dependence on the plasma
rotation and radial electric field.
Figure 3 shows the dependence of the ion NTV torque

( lg½�TNTV�) on the toroidal plasma rotation and collision-
ality. The typical plasma parameters in the core region
of JET are used in this calculation: B0 ¼ 2T, R0 ¼ 3m,

r ¼ 0:2m, LTi
� jTi=

dTi

dr j ¼ 1m, the n ¼ 1 magnetic

perturbation b1 cosð��Þ, b1 ¼ 2� 10�3, � ¼ 0:1. The
plasma rotation is scanned in the range V� ¼ ! ¼
ð1� 100Þ krad=s. The collisionality is scanned by chang-
ing the plasma density in the range ð0:1–1Þ � 1020 m�3

and keeping the ion pressure as a constant value Pi ¼
3 keV� 0:6� 1020 m�3. The neoclassical value of the
poloidal rotation, V� � knc!�Ti, knc ¼ 1:17 for the case
without momentum source or sink [19,22], is used for
radial electric field calculation.
There are obviously three regimes shown in Fig. 3. The

red dashed line indicates the location of ��d0 ¼ 1, which is
a boundary of the 1=� regime (lower right of the line) and
the general �� ffiffiffi

�
p

regime (upper left of the line). In the
general �� ffiffiffi

�
p

regime, the effect of the resonant particles
is important for xmin close to 1, which gives the super-
banana plateau regime (lower left). The boundary between
the superbanana plateau regime and the

ffiffiffi
�

p
regime (upper

right) is about xmin � jq!E=!B0j � 5, not xmin ¼ 1. This
means that particles with slightly higher energy than ther-
mal particles can already contribute a torque dominant to
the

ffiffiffi
�

p
boundary layer effects.
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It is shown in Fig. 3 that the torque increases with the
decreasing collisionality for the low collisionality case
(��i < 0:1) with a plasma rotation in the range ! �
20–30 krad=s, which is the typical plasma rotation with
NAMP on JET. It is close to the transition between the ��ffiffiffi
�

p
and superbanana plateau regimes. The collisionality

dependence in this regime is mainly contributed from the
resonant particles. The enhancement of the NTV torque
caused by the resonant particles makes the NTV torque to
be more important for the lower collisionality and lower
rotation cases, which are the ITER relevant ones.

The resonant particles can give an even stronger effect
for negative radial electric field than for positive one.
Therefore, the NTV torque will also be very large, if we
further reduce the rotation until it goes to the counter-
current direction but it is still smaller than the offset
rotation speed. This strong NTV torque will accelerate
the plasma in the countercurrent direction, which has
been observed on DIII-D [13].

In summary, a general form of the NTV torque in the
collisionless regimes in tokamaks, Eq. (7), is obtained in
this Letter. The perturbed distribution function is solved
numerically from the bounce-averaged drift kinetic equa-
tion. In different asymptotic limits of the collisionless
regimes, the numerical solutions are in good agreement
with the analytic results. The analytic results are different
from the numerical results in the transient regimes. This

numerical method can be applied for modeling the plasma
momentum dissipation caused by NTV in these collision-
less regimes and their transitions in tokamaks without
additional approximations. The NTV torque has a non-
linear dependence on the radial electrical field and the
plasma rotation. The effect of the resonant particles makes
the NTV torque more important for the lower collisionality
and lower rotation cases, which are the ITER relevant
conditions. In addition, the NTV torque due to the resonant
particle effects has a strong acceleration effect to the
countercurrent direction for the low rotation case.
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