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We show that nanoscale surface roughness, which commonly occurs on microfabricated metal

electrodes, can significantly suppress electro-osmotic flows when excess surface conductivity is appre-

ciable. We demonstrate the physical mechanism for electro-osmotic flow suppression due to surface

curvature, compute the effects of varying surface conductivity and roughness amplitudes on the slip

velocities of a model system, and identify scalings for flow suppression in different regimes of surface

conduction. We suggest that roughness may be one factor that contributes to large discrepancies observed

between classical electrokinetic theory and modern microfluidic experiments.
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Electrokinetic flows are established when an electric
field forces the diffuse ionic cloud adjacent to a charged
surface in a liquid electrolyte into motion. Micro- and
nanofluidics have driven a resurgence in electrokinetic
research, with applications as diverse as directed assembly
of colloids, energy conversion and storage, biological and
chemical sensors, pumps, and electrophoretic separations
for genomics and proteomics [1].

In electro-osmotic flow, fluid appears to ‘‘slip’’ parallel
to charged surfaces with a velocity given by the classical
Helmholtz-Smoluchowski formula,

uHS ¼ � ��

�
Ek; (1)

where � and � are the permittivity and viscosity of the
liquid, � is the potential drop across the diffuse screening
cloud, and Ek is the tangential component of the electric

field [2]. Although electrokinetics marks its origins over
two centuries ago, significant discrepancies still exist be-
tween theory and experiments [3], particularly with non-
linear ‘‘induced charge’’ effects, where the induced � can
be predicted, and thus compared directly against experi-
ments [4]. Various mechanisms have been proposed to
account for deviations from (1), such as ion steric effects
[3], ion-ion couplings [5], electroviscous effects [6], sur-
face contamination [7], and Faradaic reactions [8].

Surface geometry might also be expected to play a role
in electrokinetic transport. Morrison [9], however, showed
the electrophoretic velocity of colloidal particles to be
independent of shape and size, provided that � is constant
and screening length �D is thin relative to the colloid
radius. An analogous argument shows electro-osmotic ‘‘si-
militude’’: electro-osmotic flow through insulating micro-
channels with constant � and thin double layers is
everywhere proportional to the local electric field vector,
regardless of channel geometry [10]. Investigations of
micron-scale roughness of amplitude ar for nonconstant
� and thin double layers (�D � ar) [11], constant � and
finite but thin double layers [12], and randomly generated

roughness with constant � and �D � ar [13] indicate that
roughness may reduce electro-osmotic flow. Molecular
dynamic simulations of nanometer and subnanometer
roughness for �D � ar also suggest that roughness may
decrease electro-osmotic slip [14]. However, a general,
physical understanding for electrokinetic flow suppression
due to roughness is lacking, especially under common
experimental conditions for microfabricated systems,
where surface conduction may play a crucial role.
Here we show that even nanoscale surface roughness can

suppress electrokinetic flows whenever excess surface con-
ductivity within the double-layer is appreciable, even for
thin double layers (�D � ar) and constant � . The influ-
ence of surface conduction on electrophoresis was first
noted by Bikerman [15], Dukhin and Deryaguin [16],
and is parametrized by the Dukhin number [17],

Du ¼ �s=ð�BaÞ; (2)

where �s and �B are the surface and bulk conductivities
and a is the colloid radius. Indeed, the electrophoretic
mobility of a spherical colloid shows a maximum at Du�
Oð1Þ [18]. For rough surfaces, the roughness curvature
itself provides the relevant length scale for Du.
Evaporated metal electrodes of, e.g., ae �Oð10Þ �m di-
mension routinely show ar �Oð10Þ nm rough features
[19], whose ‘‘invisible’’ curvature would make Du greater
than naively expected from electrode geometry by a factor
of ae=ar � 103. Nanoscale roughness, then, can cause
surface conduction to play an unexpectedly strong role.
The mechanism of electro-osmotic flow suppression by

surface roughness is shown in Fig. 1. A field E1 applied
tangent to a charged, flat surface forces the ions within the
charged double layer into motion, resulting in a slip veloc-
ity u1

HS ¼ ���E1=� [Fig. 1(a)]. However, when E1 is

applied over a sinusoidally rough surface (amplitude ar
and period L), the tangential component Ek at the surface is
inhomogeneous, being strongest at roughness maxima and
weakest at minima [Fig. 1(b)], yielding an inhomogeneous
slip velocity uk. Remarkably, under conditions of weak
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excess surface conductivity (Du � 1) and thin double
layers (�D=ar � 1), the far-field electro-osmotic slip ve-
locity U1

EO is identical to that over a smooth surface

(U1
EO ¼ u1

HS). This result reflects similitude [9,10], and

holds generally when E obeys a no-flux boundary condi-
tion at solid walls (i.e., Du � 1).

As excess surface conduction becomes appreciable
(Du * 1), however, the inhomogeneous tangential field
Ek drives an inhomogeneous surface current Js � �sEk
[Fig. 1(c)]. For ions to be conserved, its divergence rs �
Js � �sE

1=ar must be balanced by bulk ion flux to or
from the double layer, J? ¼ �BE? � �BE

1. Appreciable
surface conduction thus requires a normal counterion flux
J? and field E? � ð�s=�BarÞE1 � DuE1, which reduces
both Ek and uk to give U1

EO < u1
HS.

Normal ion flux to or from the bulk (J? � �BE
1) has an

upper bound, however, and is simply too weak to accom-
modate any surface current divergence (rs � Js �
�sE

1=ar) in the Du � 1 limit of strong surface conduc-
tion. Instead, the bulk fields adjust to render the surface
current Js divergence-free. For Js to be streamwise con-
stant, so must the tangential force fk / Ek on double-layer
ions. Since this force is irrotational [

H
f � dl ¼ 0, along the

dashed line in Fig. 1(d)], fk ¼ f1=� / E1=�, where � is

the surface arclength per period L. This tangential force
gives a constant ‘‘sliding wall’’ velocity,

uk ¼ � 1

�

��E1

�
¼ u1HS

�
; (3)

which is everywhere lower than u1HS, and thus yields a far-

field velocity U1
EO < u1

HS. The transition between the two

asymptotic regimes for surface conduction (similitude for
Du ¼ 0 and sliding wall for Du ! 1) occurs for Du�
Oð1Þ. Significantly, the length scale used to form Du in (2)
is associated with the roughness itself (e.g., ar or L),
yielding a Du that can be orders of magnitude greater
than expected from macroscopic geometry.
To treat electrokinetics over rough surfaces more gen-

erally, we work in the (common) limit of thin double layers
(�D=ar � 1), solving for the fields outside the double
layer, and accounting for double-layer effects with effec-
tive boundary conditions. Since gradients in both electric
potential � and ion concentration n� drive ionic motion,
we formulate a unified driving force using the electro-
chemical potentials ��,

�� ¼ �e�þ kBT lnðn�Þ; (4)

where e is the fundamental charge, kB is Boltzmann’s
constant, T is the temperature, and � indicates positive
and negative ions. The force on an ion, f� ¼ �r��, thus
includes both electrostatic and entropic driving forces.
We compute in the weak field limit, jE1j � j�j=�D,

and linearize for weak perturbations to equilibrium quan-
tities. Linearized chemical potentials [20] become

��� � �e��þ kBT
�n�
n0

: (5)

The perturbed electric potential �� and bulk salt concen-
tration �c may be recovered from �� ¼ ð��þ �
���Þ=2e and �c ¼ ð��þ þ ���Þn0=2kBT, respectively.
Nondimensionalized governing equations [20] for the

perturbed ion number density �n� and electric potential
�� (or equivalently ���), and fluid velocity u, outside the
(thin) double layers are simply given by

0 ¼ r2���; (6)

0 ¼ �r�pþr2u: (7)

Effective boundary conditions for ion transport (6) are
constructed by enforcing ion conservation within the
double layer. As above [Fig. 1(c)], divergence in surface
ion flux Js drives a flux J? into or out of the bulk, requiring

n̂ � r��� ¼ Du�r2
s���; (8)

where Du� ¼ ��
s =ð��

B LÞ [20] represent distinct Dukhin
numbers for counterions and coions.
Coions (here assumed negative) are essentially excluded

from the double layer at appreciable surface conductivity,
so Du� & �D=L � 0. Coions thus obey an effective

FIG. 1 (color online). (a) An applied electric field E1 forces
the ion cloud around a flat charged plate into motion, driving
an electro-osmotic ‘‘slip’’ velocity u1

HS. (b) Curvature results

in an inhomogeneous tangential Ek and slip velocity uk.
(c) Appreciable surface conductivity (Du * 1) gives rise to
gradients in the excess counterion surface current Js, and con-
servation requires normal flux of counterions J? and field lines
E?. This normal flux reduces Ek and uk, yielding U1

EO < u1
HS.

Additionally, J? creates salt sources and sinks. (d) For strong
surface conductivity (Du ! 1), ion transport in the double layer
is rate-limited by exchange with the bulk, requiring a
divergence-free surface current Js and yielding a constant slip
velocity uk ¼ u1HS=�.
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no-flux condition at the charged surface,

n̂ � r���j� ¼ 0: (9)

Counterions, by contrast, obey a boundary condition

n̂ � r��þj� ¼ Du�r2
s��þj� (10)

that accounts for surface conduction: a nonuniform surface
flux Jþs requires an OðDuþÞ counterion flux into or out of
the double layer.

Boundary conditions for the velocity field (7) relate slip
velocities to ion forces f� ¼ �r���, accounting for both
electro-osmotic (from E) and chemiosmotic (from salt
concentration gradients) flows. For the Gouy-Chapman
model of the double layer, O’Brien [18] derived uk ¼
ðrs��Þ� � 4ðrs�cÞ ln½coshð�=4Þ�, or

u kj� ¼ � 1

2
ð�rs��þ þ rs���Þ� � 2ðrs��þ

þrs���Þ ln½coshð�=4Þ�: (11)

Du (coion and counterion contributions) may be com-
puted using the Gouy-Chapman solution to the nonlinear
Poisson-Boltzmann equation for the double layer [17],

Du ¼ 4�Dð1þmÞ
L

sinh2ð�=4Þ; (12)

where m ¼ 2�ðkBT=eÞ2=�D is the ratio between ion elec-
troconvection to ion electromigration. In the computations
below, we use m ¼ 0:34 (for aqueous NaCl [18]), and
arbitrarily choose �D=L ¼ 20. Such choices do not affect
our results qualitatively, but rather specify a Du-� relation.
SinceDuþ � Du andDu� � 0 forDu * 1, we use Du and
Duþ interchangeably.

Figure 2 shows ���, ��, �c, and u, obtained by solv-
ing (6) and (7) subject to (8)–(11) using the finite-element
package COMSOL, which verify the physical mechanisms in
Fig. 1. The coion potential ��� for all Du, or equivalently
the counterion potential ��þ for Du � 1, shows no ap-
preciable ion exchange between the bulk and double layer
[Fig. 2(a)]. When Du * 1, however, bulk counterions fol-
low field lines into or out of the double layer [Fig. 2(b)],
as argued physically in Fig. 1(c). The corresponding
electric potential �� for Du ¼ 100 is neither no-flux nor

equipotential [Fig. 2(c)]; furthermore, the salt concentra-
tion �c shows that counterion flux into or out of the double
layer creates local sinks or sources of salt between rough-
ness maxima, driving chemiosmotic slip uCO [Fig. 2(d)].
Velocity fields, normalized by u1HS, are shown in Figs. 2(e)

and 2(f) for Du ¼ 0:01 and Du ¼ 100, respectively. For
Du ¼ 0:01, the local slip velocity uk is inhomogeneous [as

in Fig. 1(b)], but the far-field velocity U1
EO is essentially

identical to u1
HS, reflecting similitude [9,10]. At high Du,

the slip velocity uk � u1HS=� is essentially constant as coun-

terion transport in the double layer becomes rate-limited by
exchange with the bulk [as in Fig. 1(d)].
Figure 3(a) shows the counterion contribution to the far-

field electrokinetic velocity Uctr
EO, normalized by the coun-

terion contribution to the Helmholtz-Smoluchowski slip
velocity uctrHS, at varying Du and roughness amplitudes

ar=L. The coion contribution to the far-field velocity,
Uco

EO, may be computed separately and simply added to

Uctr
EO. In particular, coions obey an effective no-flux bound-

ary condition (9), so that similitude [9] allows Uco
EO to be

computed without regard for surface geometry. As shown
in Fig. 3(b) (inset), Uco

EO 	 lnð4Þ for all Du [21], and is thus
generally weaker than Uctr

EO. For Du � 1, U1
EO � u1

HS, but

for Du�Oð1Þ, U1
EO is suppressed as ar=L increases. For

Du � 1, the tangential slip velocity uk asymptotes to a

constant value given by (3). Solving for the flow due to a
sliding wall boundary condition (uk ¼ u1HS=�) yields

quantitative agreement with the full computation for
Uctr

EO as Du ! 1 [diamonds in Fig. 3(a)], consistent with

Fig. 1(d).
Since inhomogeneities in surface current are driven by

surface curvature, we define an alternate Dukhin number,
DuR ¼ �s=ð�bRÞ, where R is the radius of curvature
at roughness maxima [Fig. 3(b)]. Plotting Uctr

EO vs DuR
reveals a remarkable collapse of the results [Fig. 3(a)].
For DuR & 1, u1

HS holds until surface conduction begins

to influence ion transport. The first such effects occur at
surface geometry maxima [Fig. 2(e)], whose curvature R
thus gives the relevant length scale for DuR. U

ctr
EO for differ-

ent ar=L thus collapse onto one master curve until DuR *
Oð1Þ, whereupon the geometry of the entire surface
becomes relevant. At this point, the surface current

FIG. 2 (color online). Computations of ���, ��, �c, and u at selected values of excess surface conductivity (Du) for roughness
length scales ar=L ¼ 0:25. (a) Coion field ��� for all Du, or equivalently, counterion field ��þ for Du � 1. Counterion field
��þ (b), electric potential �� (c), and bulk salt concentration �c (d) for Du ¼ 100. Velocity field u for Du ¼ 0:01 (e) and
Du ¼ 100 (f), normalized by u1HS. Solid black lines represent constant values of r���, r��, or velocity streamlines.
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becomes divergence-free, yielding the sliding wall velocity
(diamonds) for each specific geometry as DuR ! 1.

We have shown here that surface roughness can effec-
tively suppress electrokinetic flows and clearly elucidated
the central physical mechanism by which it occurs.
Although roughness is generally O (nm) for microfabri-
cated metal electrodes and thus ‘‘invisible’’ on macro-
scopic length scales, we have shown it can significantly
reduce velocities whenever excess surface conductivity is
appreciable [DuR �Oð1Þ], even for thin double layers and
constant � . The physics behind the mechanism we present
here are quite general—essentially requiring only ion con-
servation—and depend on geometry and excess surface
conductivity within the double layer rather than any par-
ticular model of the double layer. Although we have here
explicitly employed the Gouy-Chapman model of the
double layer—as is conventional and classical—our
analyses will hold more generally. Including static or
dynamic Stern layers [17], ion steric effects [3,5,6],
or electroviscous effects [6], for example, will affect the

specific dependence of both Du and uk upon � .
Nevertheless, we expect far-field electro-osmotic veloc-
ities Uctr

EO, when scaled by the appropriate uctrHS and plotted

against the relevant DuR, to collapse as in Fig. 3.
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FIG. 3. (a) Counterion contribution to the far-field electro-
osmotic slip velocity Uctr

EO vs roughness amplitude ar=L at

varying Du, normalized by uctr
HS. (b) Uctr

EO=u
ctr
HS plotted against

DuR ¼ �s=ð�bRÞ for various ar=L. The data collapse onto a
master curve for DuR & 1 then asymptote to the sliding wall
values (r) as DuR ! 1. Inset: Coion contribution Uco

EO vs Du,

which is independent of surface geometry.
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