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We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave

amplitudes are measured simultaneously in time and space by using an optical method. The full space-

time power spectrum shows that the wave energy is localized on several branches in the wave-vector-

frequency space. The number of branches depends on the power injected within the waves. The

measurement of the nonlinear dispersion relation is found to be well described by a law suggesting

that the energy transfer mechanisms involved in wave turbulence are restricted not only to purely resonant

interaction between nonlinear waves. The power-law scaling of the spatial spectrum and the probability

distribution of the wave amplitudes at a given wave number are also measured and compared to the

theoretical predictions.
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Wave turbulence concerns the study of the statistical and
dynamical properties of a set of numerous nonlinear inter-
acting waves. It is a ubiquitous phenomenon observed in
various situations from spin waves in solids, internal or
surface waves in oceanography, up to plasma waves in
astrophysics (for recent reviews, see [1,2]). Wave turbu-
lence theory, also called weak turbulence, predicts a wave
energy cascade through the scales that can be derived
analytically in nearly all fields of physics involving weakly
nonlinear interacting waves in infinite systems [3].
However, few well-controlled laboratory experiments
have been performed so far and show partial agreement
with the theory [1,2]. While most in situ or laboratory
measurements involve time signals at a fixed location,
theoretical predictions often concern the Fourier space.
An important challenge is thus to get a space-time mea-
surement of the turbulent wave amplitudes (as recently
achieved for elastic wave turbulence [4]) and thus to
have a better understanding of the elementary dynamical
processes involved in the energy cascade. Concerning
wave turbulence on a fluid, previous results involve either
2D spatial measurements but not resolved in time (ocean-
ography [5] and laboratory experiments [6]) or resolved in
time but restricted to 1D space [7,8]. Here, we investigate
2D spatial and temporal statistics of wave turbulence on
the surface of a fluid by using an optical profilometry
technique. We perform a Fourier analysis of movies of
the free-surface deformation and focus notably on the
nonlinear dispersion relation.

The experimental setup consists of a tank (46 cm�
36 cm) filled with water (7 cm deep). Surface waves are
generated by the horizontal motion of two plunging rectan-
gular wavemakers (19 cm inwidth and 2 cm in depth). They
are located at two corners of the same longest side of the
tank, the vibration directions being perpendicular to each

other [9]. The wave makers are driven by two electromag-
netic shakers submitted to a random forcingwithin a narrow
low-frequency band (typically from 1 to 4 Hz). Typical
maximal crest-to-trough wave amplitude ranges from
1 mm to 1.5 cm, and the wave mean steepness (ratio of
crest-to-trough amplitude to its duration) ranges from0.2 up
to 3:3 cm=s. This latter value corresponds to an injected
power P 600 times greater than its value at the minimum
forcing amplitude. This enables access to weakly and
strongly nonlinear wave regimes as well as the linear one.
A Fourier transform profilometry method [10,11] provides
the temporal evolutionof thevertical deformationof the free
surface of the fluid over a significant spatial zone of the tank.
Namely, a fringe pattern (wavelength �f ¼ 2:6 or 5.2 mm)

is projected on the fluid surface by a video projector. When
waves are generated, the vertical displacement of the free
surface leads to a phase shift of the pattern that is recorded
by a camera. The deformation of the fluid surface �ðx; y; tÞ
is then recovered by a 2Dphase demodulation of each image
of the recorded movie [10,11]. Movies are recorded with
1600 by 1200 pixels at facq ¼ 50 or 60 Hz during roughly

1 min. The size of the recorded image is 25� 19 cm2. To
improve the contrast of the projected fringes on the fluid
surface, a highly concentrated white dye is added to the
water bulk at an optimum concentration of 0:5% v=v [11].
The surface tension of this dyedwater ismeasured to be� ¼
32� 1 mN=m. Spatial and temporal resolutions of the
measurement are 3�f and 2=facq, respectively, its linearity

being ensured for waves with sharp slopes up to 10 [11].
Possible underneath hydrodynamic turbulence generated in
the bulk by the wave makers does not play a significant role
on wave turbulence (similar results are found when the
immersed length of the wave maker is changed).
The vertical velocity of the fluid surface vðx; y; tÞ is

obtained by differentiating the wave height movie in
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time. The full space-time power spectrum of the velocity
Eðk; fÞ (a function of both the wave vector k and the
frequency f) is then computed from multidimensional
Fourier transform. By integrating Eðk; fÞ over all direc-
tions of k, one obtains the velocity spectrum Eðk ¼
kkk; fÞ displayed in Fig. 1 for moderate and strong forc-
ings. We observe that the energy injected at low frequen-
cies cascades through the scales and is mainly localized on
several branches in the (! � 2�f, k � 2�=�) space. At
low forcing amplitude (not shown here), only one branch
occurs that corresponds to the linear gravity-capillary

relation dispersion !ðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gkþ ð�=�Þk3p

, with
g ¼ 9:81 m=s2 the acceleration of gravity and � ¼
1000 kg=m3 the fluid density. When the forcing is in-
creased [see Fig. 1(a)], a secondary branch appears below
the linear dispersion relation (LDR). This branch is found

to be well described by �NðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gNkþ ð�=�Þk3=Np

with N ¼ 2 with no adjustable parameter (see solid line).
At higher forcing [see Fig. 1(b)], a third branch appears
following �3ðkÞ. Thus, as the power injected in the wave

system increases, the nonlinear wave interactions redistrib-
ute the wave energy onN branches governed by�NðkÞ, the
nonlinear dispersion relation (NLDR). These secondary
branches arise from the propagation of harmonics (N!,
Nk) superimposed on a carrier long wave (!, k) and
propagating with the phase velocity of the carrier [see
below and Fig. 1(b)]. Note also that �NðkÞ ¼ N!k=N.

Thus, at a fixed k? corresponds N peaks (!k?; 2!k?=2;

3!k?=3; . . . ) in a frequency Fourier spectrum, i.e., a

horizontal slice of Fig. 1. This is consistent with a
two-peak frequency spectrum reported in a numerical
simulation [12].
At weak forcing, one observes linear gravity-capillary

waves of gentle amplitudes that mix together. At strong
forcing, steep long waves occur with sharp crest ridges (see
inset in Fig. 2). Near the crests of these waves, high order
harmonics are generated: Small gravity-capillary waves
superimposed on the long wave are observed (see also
[13]). These harmonics are called bound waves, since
they do not propagate with their own phase velocity but
with the one of the carrier long wave [14], and thus lead to
harmonics�NðKÞ of velocity�NðKÞ=K ¼ !ðkÞ=k, where
K � Nk. They thus do not obey the linear dispersion
relation which is consistent with the observation of sec-
ondary branches of the NLDR. This shows that other
mechanisms than purely resonant wave interaction should
be taken into account to describe the energy transfer across
scales in wave turbulence.
Let us now focus on the effect of the injected power P on

the location and the width of branches �NðkÞ. The maxi-
mum amplitude of each branch of the velocity spectrum
Eðk; fÞ is extracted by using the maximum of a Gaussian fit
with respect to k at a fixed f. For different P, the lines of

FIG. 1 (color online). Space-time spectrum Eðk; fÞ of the
vertical velocity of surface waves: moderate (a) and strong (b)
injected powers [P1=2 ¼ 5:2 (a) and 24.7 (b) in arbitrary units].
Forcing: 1–4 Hz. Colors are log scaled. Solid white lines are
�NðkÞ with N ¼ 1, 2, and 3 (see text). The slope of the dotted
line corresponds to a constant phase velocity !ðkÞ=k.

FIG. 2 (color online). Nonlinear dispersion relation kðfÞ com-
puted from the lines of maximum energy of Eðk; fÞ for different
forcings [P1=2 ¼ 1 (þ), 5.2, (�), 10.5 (�), and 24.7 (�)]. The
solid thick lines around each branch correspond to the branch
width averaged for all forcings. The solid lines are �NðkÞ with
N ¼ 1, 2, and 3 (see the text—the same as in Fig. 1). Inset:
Snapshot of the wave amplitudes at strong forcing (P1=2 ¼ 24:7).
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maximum energy of each branch are shown in Fig. 2 (sym-
bols). Whatever the branch, the localized energy line is
found to be independent of P; no measurable shift of these
lines occurs in the ðk; !Þ space. This differs from recent
observations reported in elastic wave turbulence [4] or in
simulation [12]. The widths of these branches are also
plotted in Fig. 2. The width is defined by the rms value
of the Gaussian fit. Whatever the branch, no significant
evolution of the width is found when P is increased. The
width is also independent of the branch number within our
experimental accuracy. The typical width [�ð��1Þ, �f]
centered on a point ð��1; fÞ of the NLDR is roughly
(8 m�1, 1.5 Hz) and could be ascribed to the typical non-
linear scale of wave mixing. However, one should be care-
ful since �ð��1Þ is close to the resolution of the discrete
Fourier transform (� inverse of the image size �5 m�1).
To sum up, the wave energy is redistributed on different
branches of the NLDR of width that is independent of P
and of N.

Figure 3 shows different views of the full space-time
Fourier spectrum of the velocity Eðk; fÞ. The main figure is
Eðkx; fÞ, a slice at ky ¼ 0 of the spectrum along the x axis.

Figures 3(a) and 3(b) show EðkÞ at two fixed frequencies
(5 and 9 Hz, respectively). In Fig. 3(a), the forcing remi-
niscence appears as strong peaks in the direction of the
wave makers (see dashed lines). Because of wave turbu-
lence, energy cascades across scales as can be seen in
the two continuous branches in the main part of Fig. 3.
Simultaneously, a spread of energy across angles is respon-
sible for the continuous circles observed in the insets: The
two concentric circles in Fig. 3(b) correspond to two wave
numbers given by both branches of the NLDR, whereas in
Fig. 3(a) one rather observes a single disk due to the

overlapping of both branches of nonzero width (see above).
Although not fully isotropic, this angular redistribution of
energy is due to wave turbulence and is also visible as the
symmetry between positive and negative kx in the main
part of Fig. 3.
The space spectrum Eðk � kkkÞ of the velocity is then

computed by summing the 3D space-time spectrum of
Eðk; fÞ over all the directions of k and over f. Figure 4
shows EðkÞ when the forcing is increased. At high enough
forcing, EðkÞ is found to be scale-invariant as expected for
wave turbulence. The inertial range increases with the
forcing, and EðkÞ � k�n with n ’ 4:2 over almost one
decade in k corresponding to �� a few centimeters. Note
that n does not depend strongly on the forcing. Since one
cannot compute EðfÞ from Eðk; fÞ in a wide range of f due
to the strong steepness of the spectrum, one performs
single point temporal measurements that show a strong
dependence of the power-law frequency exponent of the
velocity spectrum on the forcing as already reported (typi-
cally from f�5 to f�2) [9,15]. These scalings suggest that
the change of variable k $ f using the LDR to estimate
EðkÞ from EðfÞ is not valid in temporal measurements in
hydrodynamics wave turbulence when strong nonlinear
waves are involved. Indeed, this would lead to an estimated

velocity spectrum from k�3 to k�3=2. Moreover, our veloc-
ity spectrum scaling EðkÞ � k�4:2 cannot be described by
any existing theories of wave turbulence taking into ac-
count either the presence of random-phased weakly non-

linear waves [EtheoðkÞ � P1=2k�1=2] [16] or the dominance
of coherent sharp wave crests [EtheoðkÞ � k�1 to k�3] [8]. It
is known numerically that the spatial spectrum exponent
can change in the case of anisotropy [17]. To confirm that
our results do not depend on anisotropy, one computes EðkÞ
by summing Eðk; fÞ over different ðkx; kyÞ space regions:

(i) over (kx, ky > 0) where isotropy is observed, (ii) over

FIG. 3 (color online). Space-time spectrum Eðkx; fÞ of veloc-
ity at P1=2 ¼ 10:5 located at ky ¼ 0. The same forcing band-

width as in Fig. 1. Inset: Space spectrum Eðkx; kyÞ located at

f ¼ 5 (a) and 9 Hz (b). Dashed lines: Forcing directions. Log
scaled colors are different for each plot.

FIG. 4 (color online). Spatial power spectrum EðkÞ of the
velocity for P1=2 ¼ 1, 5.2, 10.5, and 24.7 (from bottom to top).
Dashed lines have slopes �4:6, �4:5, and �4:2 (from bottom to
top). Dot-dashed line: ��1

? ¼ 25:2 m�1 (see Fig. 5).
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(kx, ky < 0) where anisotropy occurs due to the forcing

(see insets of Fig. 3), and (iii) all over ðkx; kyÞ space. The
spatial spectrum EðkÞ � k�z computed over these different
regions leads to z ¼ 4:3 (i), 3.8 (ii), and 4.2 (iii). Thus, the
anisotropy does not play a significant role in the estimation
of the spatial spectrum exponent.

Finally, the probability density function (PDF) of the
wave amplitude �ðx; yÞ is found to be roughly Gaussian
whatever the forcing. One also computes the PDF of the
Fourier amplitude j�̂k?

j2 of a wave component at a given

wave number k?. As shown in Fig. 4, we choose k? �
2�=�? in the gravity regime with ��1

? ¼ 25:2� 0:6 m�1

corresponding (using the LDR) to a frequency of 6.5 Hz
above the forcing ones. For each image, the value of j�̂k?

j2
is extracted by averaging on 42 amplitudes found on a
k-space ring of radius k?. Iterating for all images leads to
the temporal evolution of the Fourier amplitude of the
mode k? as shown in Fig. 5. This signal is strongly erratic,
and bursts of random large-amplitude occur. Similar ran-
dom bursts of Fourier amplitude have been reported in
simulations [12], these bursts being correlated with phase
jumps underlying strong nonlinear effects [12]. Although
we are not able to measure the phase, this similarity is
consistent with our above results underlying a strong non-
linear effect. The PDF of the Fourier amplitude j�̂k?

j2,
rescaled to its rms value �j�̂k?

j2 , is then plotted in Fig. 5

for two forcings. At low forcing, the PDF is roughly
exponential as expected for random and uncorrelated
waves. At higher forcing, the PDF remains Gaussian up
to 3 standard deviations, whereas its tail shows a slight
departure from this Gaussian. Although more statistics are

needed to characterize more deeply the PDF tail, this
anomalously large probability of high Fourier mode am-
plitude is consistent with 1D spatial measurements [8],
simulations [12], and theory [18].
In conclusion, we have reported 2D spatial statistics of

wave turbulence on the surface of a fluid. The power
spectrum, the nonlinear dispersion relation, and the PDF
of the Fourier modes show strong effects of nonlinear
waves involved in wave turbulence. This suggests that
energy transfer mechanisms are restricted not only to
resonant interactions between nonlinear waves but also
involve the formation of localized nonlinear structures
(sharp-crested gravity waves) and of bound gravity-
capillary waves. The wave spectrum scalings emphasize
that the transition from k space to ! space cannot be done
according to the linear dispersion relation as usually per-
formed in wave turbulence experiments.
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FIG. 5 (color online). PDF of the Fourier wave amplitude,
j�̂k?

j2=�j�̂k?
j2 , at k? � 2�=�? with ��1

? ¼ 25:2� 0:6 m�1

(see Fig. 4) for two forcings P1=2 ¼ 5:2 (�) and 10.5 (�).
hj�̂k?

j2i ¼ 1:1 (�) and 1.3 (�). Solid lines have slopes �0:46

and �0:58. Curves have been shifted vertically for clarity. Inset:
j�̂k?

j2 vs time. ��1
? ¼ 25:2� 0:6 m�1. P1=2 ¼ 24:7.
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