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We study the statistical properties of population dynamics evolving in a realistic two-dimensional

compressible turbulent velocity field. We show that the interplay between turbulent dynamics and

population growth and saturation leads to quasilocalization and a remarkable reduction in the carrying

capacity. The statistical properties of the population density are investigated and quantified via multi-

fractal scaling analysis. We also investigate numerically the singular limit of negligibly small growth rates

and delocalization of population ridges triggered by uniform advection.
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For high nutrient concentration on a hard agar plate, the
Fisher equation [1] can be a good description of the spread-
ing of microorganisms such as bacteria at low Reynolds
number [2]. However, many microorganisms, such as those
in the ocean, must find ways to thrive and prosper in high
Reynolds number fluid environments. In the presence of a
turbulent advecting velocity field uðx; tÞ, the Fisher equa-
tion reads

@C

@t
þ r � ðuCÞ ¼ Dr2Cþ�Cð1� CÞ; (1)

where�Cðx; tÞ is a continuous variable describing the con-
centration of microorganisms, D is the diffusion coefficient
and � is the growth rate. As an example of ‘‘life at high
Reynolds number,’’ we could take Eq. (1) to represent the
density of the marine cyanobacterium Synechococcus [3]
under conditions of abundant nutrients, so that�� constant.

As discussed in [4], an advecting compressible turbulent
flow leads to highly nontrivial dynamics. Although the
results of [4] were obtained only in one dimension using
a synthetic advecting flow from a shell model of turbu-
lence, two striking effects were observed: the concentra-
tion field Cðx; tÞ is strongly localized near transient but
long-lived sinks of the turbulent flows for small enough
growth rate �; in the same limit, the space-time average
concentration (denoted in the following as carrying ca-
pacity) becomes much smaller than its maximum value
1. Both effects are relevant in biological applications [5].

In this Letter, we present new numerical results for more
realistic two-dimensional turbulent flows. We assume that
the microorganism concentration field Cðx; tÞ, whose dy-
namics is described by Eq. (1), lies on a planar surface of
constant height in a three-dimensional fully developed
turbulent flow with periodic boundary conditions. Such a
system could be a rough approximation to photosynthetic
microorganisms that actively control their buoyancy to
maintain a fixed depth below the surface of a turbulent
fluid [6]. As a consequence of this choice, the flow field in

the two-dimensional slice becomes compressible [7]. We
consider here a turbulent advecting field uðx; tÞ described
by the Navier-Stokes equations, and nondimensionalize

time by the Kolmogorov dissipation time scale �� �
ð�=�Þ1=2 and space by the Kolmogorov length scale � �
ð�3=�Þ1=4, where � is the mean rate of energy dissipation
and � is the kinematic viscosity. The nondimensional
numbers characterizing the evolution of the scalar field
Cðx; tÞ are then the Schmidt number Sc ¼ �=D and the
nondimensional time ���. A particularly interesting re-

gime arises when the doubling time �g � ��1 is some-

where in the middle of the inertial range of eddy turnover
times (�r ¼ r=�ru, where �ru is the typical velocity dif-
ference across length scale r) that characterize the turbu-
lence. Although the underlying turbulent energy cascade is
somewhat different [8], this situation arises for oceanic
cyanobacteria and phytoplankton, who double in 8–12
hours, in a medium with eddy turnover times varying
from minutes to months [6].
The main results of our investigation are the following:

we confirm the qualitative behavior found in [4] for a two-
dimensional population, under more realistic turbulent
flow conditions. We also investigate the limit � ! 1
and discuss the singular limit of � ! 0 validating the
physical picture proposed in [4]. Our understanding of
the limit ��� � 1 may be helpful in future investigations,

as explicit computations for�> 0 can be very demanding.
In addition, we quantify the statistical properties of the
concentration field and investigate the effect of a uniform
convective background flow field.
We conducted a three-dimensional direct numerical

simulation of homogeneous, isotropic turbulence at two
different resolutions (1283 and 5123 collocation points) in
a cubic box of length L ¼ 2�. The Taylor microscale
Reynolds number [9] for the full 3D simulation was Re� ¼
75 and 180, respectively, the dimensionless viscosities were
� ¼ 0:01 and � ¼ 2:05� 10�3, and the total energy
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dissipation rate was around � ’ 1 in both cases. For the
analysis of the Fisher equation we focused only on the time
evolution of a particular 2D slab taken out of the full three-
dimensional velocity field and evolved a concentration field
Cðx; tÞ constrained to lie on this plane only. This is a
particularly efficient way of producing a compressible 2D
velocity field in order to mimic the flow at the surface of
oceans. Note that our velocity field has nothing to do with
2D turbulence and has the structures, correlations and spec-
tra of a bidimensional cut of a fully 3D turbulent flow. A
typical plot of the 2D concentration field and the concen-
tration field conditioned by the corresponding velocity
divergence field (taken at time t ¼ 86, Re� ¼ 180) in this
plane is shown in Fig. 1 (Sc ¼ 5:12). The Fisher equation
was stepped forward using a second-order Adams-
Bashforth scheme. The spatial derivatives in the diffusion
operator are discretized using a central, second-order,
finite-difference method. As the underlying flow field is
compressible, sharp gradients in the concentration field
can form during time evolution. In order to capture these
sharp fronts we use a Kurganov-Tadmor scheme for the
advection of the scalar field by the velocity field [10].

The concentration Cðx; tÞ is highly peaked in small
areas, resembling one-dimensional filaments [see Fig. 1
and supplemental movie [11]]. When the microorganisms
grow faster than the turnover times of a significant fraction
of the turbulent eddies, Cðx; tÞ grows in a quasistatic
compressible velocity field and accumulates near the re-
gions of compression, leading to filaments [12]. The ge-
ometry of the concentration field suggests that Cðx; tÞ is
different from zero on a set of fractal dimension dF much
smaller than two. A box counting analysis of the fractal
dimension of Cðx; tÞ supports this view and provides evi-
dence that dF ¼ 1:0� 0:15.

A biologically important quantity is the spatially aver-
aged carrying capacity or the density of biological mass in
the system,

ZðtÞ ¼ 1

L2

Z
dxdyCðx; tÞ; (2)

and, in particular, its time average in the statistical steady
state as a function of the growth rate �, hZi�. Without

turbulence hZi� ¼ 1 for any �. When turbulence is acting

in the limit� ! 1 we expect the carrying capacity attains
its maximum value hZi�!1 ¼ 1, because when the char-

acteristic time �g becomes much smaller than the

Kolmogorov dissipation time ��, the velocity field is a

relatively small perturbation on the rapid growth of the
microorganisms. Indeed, consider a perturbation expan-
sion of Cðx; tÞ in terms of �g. We define Cðx; tÞ �P

n¼0;...;1�ngCnðx; tÞ, and substitute in Eq. (1), where the

functions Cnðx; tÞ are the coefficients of the expansion.
Upon assuming a steady state and collecting the terms
up to Oð�2gÞ we find, after some algebra, hZi� �
1� ð�2g=L2ÞhRðr � uÞ2dxi þOð�3gÞ.
The limit � ! 0 can be investigated by noting that for

� ¼ 0, Eq. (1) reduces to the Fokker-Planck equation
describing the probability distribution P ðx; tÞ to find a
Lagrangian particle subject to a time varying force field
uðx; tÞ

@P
@t

þ r � ðuP Þ ¼ Dr2P : (3)

Upon defining � � hðr � uÞ2i1=2 as the rms value of the
velocity divergence, following [4] we expect a crossover in
the behavior of hZi� for �< �. In the limit � ! 0, we

expect

FIG. 1 (color online). (Left panel) Pseudocolor plot of concentration field. The bright (yellow) regions indicate regions of high
concentration (C> 0:1) and the black regions indicate regions of low concentration. (Right panel) Pseudocolor plot of
½Cðx; t0Þ=½0:1þ Cðx; t0Þ	½tanhð�r � uÞ		. The grey (red) regions indicate negative divergence and large concentration whereas
dark grey (blue) regions indicate positive divergence and large concentration. Plots are made at identical time t0 (after the steady
state has been reached) on a slice z ¼ const obtained from our 5122 numerical simulations of Eq. (1) for ��� ¼ 0:0045 and Schmidt

number Sc ¼ 5:12. Note that microorganisms cluster near regions of compression (r � u< 0), as is evident from the high density of
grey (red) regions.
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lim
�!0

hZi� ¼ 1

hP 2iL4
: (4)

To understand Eq. (4), note first that for small � the statis-
tical properties of C should be close to those of P . Thus we
can assume that, in a statistical sense, Cðx; tÞ �
L2hZi�P ðx; tÞ. Averaging Eq. (1) in space and time leads

to hCi� � hC2i� ¼ 0, which is equivalent to Eq. (4).

Equation (4) is crucial, because it allows us to predict
hZi� for small � from the knowledge of the well-studied

statistical properties of Lagrangian tracer particles without
growth in compressible turbulent flows. We have therefore
tested both Eq. (4) and the limit � ! 1 against our nu-
merical simulations. In Fig. 2 we show the behavior of hZi�
for the numerical simulations discussed in this Letter. The
horizontal line represents the value 1=ðhP 2iL4Þ obtained
by solving Eq. (3) for the same velocity field and � ¼ 0.
The insert shows a similar result for a one-dimensional
compressible flow [4]. For our numerical simulations we
observe, for��� > ��� � 0:23 the carrying capacity hZi�
becomes close to its maximum value 1. The limit � ! 0
requires some care: the effect of turbulence is relevant for �g
longer than the Kolmogorov dissipation time scale ��. We

take the limit � ! 0 at fixed system size L. When �g 

�L � ðL2=�Þ1=3, the large-scale correlation time, the popu-
lation is effectively frozen on all turbulent time scales, and
Eq. (4) should apply.

The limit � ! 0 can be investigated more precisely as
follows: according to known results on Lagrangian parti-
cles in compressible turbulent flows, P should have a
multifractal structure in the inviscid limit � ! 0
[7,13,14]. If our assumption leading to Eq. (4) is correct,

Cðx; tÞ must show multifractal behavior in the same limit
with multifractal exponents similar to those of P .
We perform a multifractal analysis of the concentration

field Cðx; y; tÞ with �> 0 by considering the average

quantity ~C�ðr; tÞ � 1
r2

R
BðrÞ Cðx; y; tÞdxdy where BðrÞ is a

square box of size r. Then the quantities h ~C�ðrÞpi are

expected to be scaling functions of r, i.e., h ~C�ðrÞpi �
raðpÞ, where aðpÞ is a nonlinear function of p.
In Fig. 2 we show the quantity aðpÞ for� ¼ 0, 0.1, and 1

for 0 � p � 4 extracted from power-law fits to h ~CðrÞpi
over �1:5 decades. In the inset we show h ~CðrÞ2i for � ¼
0:01. Although our dynamic range is limited, the scaling
description seems to work with smoothly varying expo-
nents aðpÞ. Even more important, the statistical properties

of ~C�ðrÞ seems to converge to the case� ¼ 0 as� ! 0. In

the same figure we also show, for comparison, a similar
analysis performed for the energy dissipation field (black
line); see [9] for a detailed description.
Our multifractal analysis suggests a relation between the

quasilocalization length 	 and the carrying capacity hZi�.
The quasilocalization length 	 can be considered as the
smallest scale below which one should not observe fluctu-
ations of Cðx; tÞ. In the limit � ! 0, we can define the
quasilocalization length 	 as

	2 � hP 2i
hðrP Þ2i : (5)

We expect 	 to be of the same order of the width of the
narrow filaments in Fig. 1. To compute hZi� as a function

of 	, we observe that it is reasonable to assume

hP 2ðx; tÞi � hC2ðr ¼ 	; tÞi � 	að2Þ. Using Eq. (4) we

obtain hZi� � 	�að2Þ. On the left panel of Fig. 3 we show

hZi� as a function of 	 [obtained by using (5)] for�¼0:01

by varying the diffusivity D. Reducing the diffusivity D
shrinks the localization length 	 and hZi� becomes smaller.
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FIG. 2 (color online). (Left panel) Behavior of the carrying
capacity hZi��� as a function of ��� from 1282 [(red) dots] and

5122 [(blue) squares] numerical simulations with Sc ¼ 1. Note
that for ��� & 0:001, the carrying capacity approaches the limit

1=ðhP 2iL4Þ � 0:16� 0:02 [dark grey (blue) line] predicted by
Eq. (4). In the inset we show similar results for one-dimensional
compressible turbulent flows in [4]. (Right panel) The anoma-
lous exponents aðpÞ computed by the multifractal analysis of the
concentration field Cðx; tÞ for different values of � and Sc ¼ 1
for our 5122 numerical simulation. Note that for � ! 0 the
multifractal exponents approach the statistical properties of the
field P described by Eq. (3). The black line shows the multi-
fractal properties of the energy dissipation rate �. In the inset we
show the scaling behavior of h ~CðrÞ2i for � ¼ 0:1.
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FIG. 3 (color online). (Left panel) Log-log plot of hZi as a
function of the localization length 	 defined in Eq. (5) for u0 ¼
0. The grey (blue) line is the fit to the power law. The slope is
consistent with the prediction hZi � 	�að2Þ discussed in the text.
The numerical simulations are done for � ¼ 0:01 and different
values of D from D ¼ 0:05 to D ¼ 0:001. (Right panel) Plot of
hZi as function of a superimposed uniform velocity u0 for � ¼
0:01 [(red) bullets] and � ¼ 0:1 [(green) triangles] with D ¼
0:015.
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Dimensional analysis applied to Eq. (3) and (5) suggests

that 	 / ðD2�=�Þ1=4. More generally we expect that 	ðDÞ
is monotonically increasing with D. From Fig. 3 (left
panel), a reasonable power-law behavior is observed
with a scaling exponent 0:46� 0:03 very close to the
predicted behavior �að2Þ ¼ 0:47 obtained from Fig. 2
(right panel inset).

Note that Fig. 3 (left panel) reveals a strong dependence
of hZi� on 	 and hence on the microbial diffusion constant.

D in turn depends on the ability of marine microorganisms
to swim. Approximately 1=3 of the open ocean isolates of
Synechococcus can propel themselves along their micron-
sized long axis at velocities of �25 �m= sec [15]. Upon
assuming a random direction change every �20–30 body
lengths, the effective diffusion constant entering Eq. (1)
can be enhanced 1000-fold relative to D for passive organ-
isms. The extensive energy investment required for swim-
ming in a turbulent ocean becomes more understandable in
light of the increased carrying capacity associated with,
say, a �30-fold increase in 	. Some marine microorgan-
isms may have evolved swimming in order to mitigate the
overcrowding associated with compressible turbulent
advection.

Finally, we discuss bacterial populations subject to both
turbulence and uniform drift because of, e.g., the ability to
swim in a particular direction. In this case, we can decom-
pose the velocity field into zero mean turbulence fluctua-
tions plus a constant drift velocity u0 [16] along, e.g., the x
direction. In presence of a mean drift velocity Eq. (1)
becomes

@C

@t
þ r � ½ðuþ u0êxÞC	 ¼ Dr2Cþ�Cð1� CÞ (6)

where êx is the unit vector along the x direction. Note that a
mean drift (to follow nutrient gradients, for example)
breaks the Galilean invariance as the concentration C is
advected by u0, while turbulent fluctuations u remain
fixed. In Fig. 3 we show the variation of carrying capacity
versus u0 for two different values of� and fixed diffusivity
D ¼ 0:015. We find that for u0 & urms (the root-mean-
square turbulent velocity) the carrying capacity Z saturates
to a value equal to the value of Z in the absence of u0; i.e.,
quasilocalization by compressible turbulence dominates
the dynamics. For u0 > urms the drift velocity delocalizes
the bacterial density eventually causing Z ! 1, as was also
found in d ¼ 1.

We have shown that a realistic model for two-
dimensional compressible turbulence predicts reduced
microorganism-carrying capacities, similar to those found
in a highly simplified 1D model [4]. Simulations at two
elevated Reynolds numbers show that results are robust
and in agreement when properly normalized. The limit of
large growth rates was addressed analytically, and the

statistics maps smoothly onto known results for conserved
densities advected by compressible turbulence. Finally we
studied the effect of a preferred swimming direction on the
carrying capacity.
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