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We present the first experimental realization of an optical analog for relativistic quantum mechanics by

simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our

photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an

optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned

miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.
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Simulating the evolution of a nonrelativistic quantum-
mechanical particle in a periodic potential by propagating
an optical wave packet in arrays of evanescently coupled
waveguides has received continuous and increasing atten-
tion in recent years [1]. The underlying idea of mapping
nonrelativistic quantum mechanics onto an optical model
system is the conceptual similarity between the Schrödinger
equation for matter waves and the scalar paraxial wave
equation for optical waves. This formal correspondence
allowed for the observation of various classical analogues
of nonrelativistic phenomena commonly associated with the
evolution of electrons in periodic potentials, such as optical
Bloch oscillations [2] and Zener tunneling [3], optical dy-
namic localization [4], Anderson localization in disordered
lattices [5], and geometric potentials in topological crystals
[6]. It is a common belief that the use of optical waveguides
as a model system for quantum mechanics carries the intrin-
sic drawback of being limited to nonrelativistic phenomena
and that the observation of optical analogues of relativistic
phenomena requires subwavelength structured media like
photonic crystals or metamaterials [7–9]. However, only re-
cently it has been realized that, by carefully designing the
underlying periodic potential, paraxial light propagation is
capable of simulating the evolution of a relativistic quantum
particle, as described by the spinor-type Dirac equation.
Thus, optical analogues of such important phenomena as
Klein tunneling [10,11] and Zitterbewegung (ZB) [12] can
be realized in the framework of paraxial optics in periodic
media, without requiring specially synthesized media with
subwavelength controlled properties.

The concept of ZB was first introduced by Schrödinger
when analyzing the properties of Dirac’s relativistic wave
equation [13]. He found that a free relativistic electron
exhibits a rapid trembling motion due to interference be-
tween positive and negative energy states [14]. The phe-
nomenon of ZB raised a lively and controversial debate
since it was unclear how an intrinsic single-particle equa-
tion as the Dirac equation can describe a multiparticle

phenomenon as ZB, where at least two particles (the elec-
tron and its counterpart in the Dirac sea, the positron) are
required [15]. A direct experimental confirmation of ZB for
relativistic electrons is very unlikely, mainly because of the
extremely small amplitude of the trembling motion (of the
order of the Compton wavelength �10�12 m) and the ex-
tremely high oscillation frequency (�1021 Hz). Various
analogous systems were suggested in order to observe this
effect, such as tight-binding semiconductor lattice models
[16], trapped ions [17], graphene [18], ultracold neutral
atoms [19], and—in photonic settings—two-dimensional
photonic crystals [8] and negative-zero-positive index
metamaterials [9]. The search for experimentally accessible
systems that are described by a Dirac-type equation has
received a great amount of attention in the past few years,
culminating in the recent demonstration of a quantum
simulator of the Dirac equation and the observation of ZB
using a single trapped ion set to behave as a free relativistic
quantum particle [20].
In this Letter we present a classical simulator of the

relativistic Dirac equation in an optical setting, with the
observation of ZB for optical beams. We demonstrate that
the two-component (spinor) wave function dynamics of the
Dirac equation can be simulated by paraxial light propa-
gation in an optical superlattice, where the spinor is rep-
resented by the two lattice sites within the primitive unit
cell. Our photonic setting enables a direct visualization of
ZB as a spatial oscillatory motion of an optical beam in the
superlattice and allows us to observe the transition from the
far- to the weak-relativistic regime by tuning the gap
between the two superlattice minibands [16].
The optical structures realized for our experiments con-

sist of a set of 75 mm-long binary waveguide arrays com-
posed by two interleaved sublattices A and B [Fig. 1(a)]
manufactured in fused silica samples using the laser-direct
writing technology [21]. The two sublattices are realized
by writing an alternating sequence of waveguides with
high and low index change separated by the same distance
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a [22]. As noticed in [12], spatial propagation of a mono-
chromatic paraxial light field Eðx; zÞ (x and z are the
transverse and longitudinal coordinates, respectively) at
wavelength � along the waveguides simulates the free
motion of a relativistic massive particle in one spatial
dimension whenever the lattice excitation is accomplished
by a broad beam tilted near the Bragg angle. In the tight-
binding approximation, the field Eðx; zÞ can be expanded
into a superposition of confined modes trapped in the
various guides, and light transport is described by the
coupled-mode equations [23]

i
dan
dz

¼ ��ðanþ1 þ an�1Þ þ ð�1Þn�an; (1)

where an are the modal field amplitudes in the various
waveguides and 2� and � are the propagation constant
mismatch and the coupling rate between two adjacent
waveguides of the array, respectively. The superlattice
supports two minibands, separated by a narrow gap of
width 2� [see Fig. 1(b)], defined by the dispersion curves

[22] !�ðqÞ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ 4�2cos2ðqdÞp

, where 2d is the lat-
tice period and q the Bloch wave number. Hence, in the
vicinity of the edges of the first Brillouin zone, e.g., near
q ¼ �=ð2dÞ, the dispersion curves of the two minibands
form two opposite hyperbolas, and therefore mimic the
typical hyperbolic energy-momentum dispersion relation
for positive-energy and negative-energy branches of a
freely moving relativistic massive particle (dotted graph).
This suggests that light transport in the lattice for Bloch
waves with wave number q close to �=ð2dÞ simulates the
temporal dynamics of the relativistic Dirac equation. When
launching a broad beam tilted at the Bragg angle �B ’
�=ð4nsdÞ (ns is the substrate refractive index) into the
array, only a small region around q ¼ �=ð2dÞ in q space
is excited. After setting a2nðzÞ ¼ ð�1Þnc 1ðn; zÞ and
a2n�1 ¼ �ið�1Þnc 2ðn; zÞ and introducing the continuous
transverse coordinate � $ n ¼ x=ð2dÞ, the two-
component spinor c ð�; zÞ ¼ ðc 1; c 2ÞT satisfies the one-
dimensional Dirac equation [12,16]

i
@c

@z
¼ �i��

@c

@�
þ ��c ; (2)

where

� ¼ 0 1
1 0

� �

and � ¼ 1 0
0 �1

� �

are the�x and�z Pauli matrices, respectively. Equation (2)
corresponds to the one-dimensional Dirac equation for a
relativistic freely moving particle of mass m provided that
the formal change,

� ! c; � ! mc2=@; (3)

is made, and � and z are interpreted as the spatial and the
temporal variables, respectively. Therefore, in our optical
setting the temporal evolution of the Dirac spinor wave
function c is mapped onto the spatial evolution along z of
the field amplitudes c 1 and c 2, describing the occupation
amplitudes of light in the two sublattices A and B of the
binary array. Correspondingly, ZB is observed as a quiver-
ing spatial oscillatory motion of the beam center of mass
hniðzÞ ¼ P

nnjanj2=
P

njanj2. Note that the measurable
quantity hniðzÞ is directly related to the expectation value
of position for the relativistic particle, h�iðzÞ ¼
½R d��ðjc 1j2 þ jc 2j2Þ�=½

R

d�ðjc 1j2 þ jc 2j2Þ�, by the
simple relation hni ’ 2h�i þ 1=2 [12]. When the envel-
ope G for the initial light field Eðx; 0Þ ¼ GðxÞ�
expð2�ixns�B=�Þ, which is tilted at the Bragg angle �B,
varies slowly over the waveguide spacing d, an exact
expression for h�iðzÞ can be derived and reads [12]

h�iðzÞ ¼ h�ið0Þ þ v0zþ 2���2
Z

dkð1=	3Þ

� sinð2	zÞjĜðkÞj2; (4)

where k ¼ 2qd� � is the shifted transverse momentum,

	ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ �2k2
p

defines the energy-momentum disper-

sion relation of the free relativistic particle, ĜðkÞ ¼
ð1=2�ÞR d�Gð2d�Þ expð�ik�Þ is the angular spectrum of

the beam envelope, and v0 ¼ 4��3
R

dkðk=	Þ2jĜðkÞj2 is

the mean particle speed [24]. The last oscillatory term on
the right-hand side of Eq. (4), superimposed to the straight

trajectory defined by the first two terms, is the ZB. For ĜðkÞ
centered at k ¼ 0, at leading order Eq. (4) yields h�i�
ðzÞ ’ h�ið0Þ þ v0zþ ð�=2�Þ sinð2�zÞ; i.e., the amplitude
and frequency of ZB are given by

RZB ¼ �=ð2�Þ ¼ @=ð2mcÞ; (5)

!ZB ¼ 2� ¼ 2mc2=@; (6)

respectively [25]. Therefore, ZB vanishes for either the far-
relativistic (m ! 0) or the weak-relativistic (m ! 1) lim-
its: in the first case the amplitude of ZB diverges, but the
oscillation frequency !ZB goes to zero, whereas in the
latter case the frequency of ZB diverges, but its amplitude
vanishes (see, for instance, [16]).
In our experiments, the transition between the different

regimes is realized by tuning the propagation constant

A AB B

d d d

(a) (b)

2σ

d 2d 2d d

FIG. 1 (color online). (a) Refractive index profile of the binary
waveguide system consisting of an alternating sequence of high
(A) and low (B) index waveguides; the arrows show beam
excitation in real space under the Bragg angle �B. (b) Band
structure of the binary array, comprising two minibands sepa-
rated by 2�. The dotted curve shows the hyperbolic dispersion
curve of the Dirac equation near q ¼ �=ð2dÞ.
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mismatch �, keeping the coupling rate � of adjacent wave-
guides constant (� ¼ 0:14 mm�1 for a waveguide spacing
d ¼ 16 
m). The tuning of � is accomplished by varying
the ratio between the writing velocities of adjacent wave-
guides in the sublattices A and B. A fluorescence micro-
scopy technique [26] enables us to map the flow of light
from the top of the sample, and thus to visualize the spinor
wave packet evolution.

The first superlattice was designed and manufactured to
approach the far-relativistic regime (� ¼ 0:07 mm�1 ¼
0:5�). This corresponds to a small particle mass [see
Eq. (3)] and therefore a large ZB period�ZB ¼ 2�=!ZB ¼
�=� accompanied by a large ZB amplitude RZB, according
to Eqs. (5) and (6). The array was excited by a broad
Gaussian beam at a wavelength of � ¼ 633 nm with a
spot size of ’ 105 
m in the horizontal x direction, cover-
ing approximately 7 waveguides. The Bragg angle of
�B ’ 0:39� was carefully aligned by mounting the sample
onto a precision rotation stage. As calibration we used a
homogeneous waveguide array, where we adjusted the
propagating beam to minimal diffraction, which exactly
occurs at the Bragg angle [27]. The fluorescence image of
the beam propagation inside the sample, simulating the far-
relativistic regime, is shown in Fig. 2(a). The results are
compared to numerical simulations [Fig. 2(a)], based on
the coupled-mode equations [Eq. (1)]. One clearly sees an
oscillation of the beam, accompanied by a transverse drift.
The oscillations turn out to be asymmetric, a feature which
is ascribable to the angular spectral broadening of the
launching beam. The ZB is clearly observed when the

beam center of mass hniðzÞ is extracted from the fluores-
cence image. The result, depicted in Fig. 2(c), shows that
beam oscillations around the straight mean path occur with
a ZB amplitude of 1 waveguide (16 
m) and with a large
period of �ZB ¼ 44:9 mm, in good agreement with the
theoretical predictions. Owing to the limited length of the
sample, only two beam oscillations are visible for the
chosen small value of the mismatch �.
As � is increased to reach the same order as �, the

relativistic regime, corresponding to a moderate ZB ampli-
tude and to a shorter ZB period, is attained. As an example,
Fig. 3 shows the experimental measurements, together with
the theoretical predictions, of beam propagation and ZB in
a binary array with a mismatch of � ¼ 0:15 mm�1 ¼
1:1�. The beam clearly exhibits a pronounced trembling
motion around the main trajectory, with a shorter ZB
period (�ZB ¼ 20:4 mm) but smaller ZB amplitude
(0:45waveguides ¼ 7 
m) as compared to the case of
Fig. 2. Note also that, as compared to Fig. 2, the transverse
beam drift is greatly reduced. This is due to the fact that the
drift velocity v0 decreases as the ratio �=� increases.
By further increasing the propagation constant mismatch,

the weak-relativistic regime, corresponding to a very rapid
trembling motion but with almost vanishing amplitude, can
be observed. As an example, Fig. 4 shows the experimental
measurements and numerical simulations for a binary array
with � ¼ 0:3 mm�1 ¼ 2:1�. In this case, from Fig. 4(c)
the oscillation period and ZB amplitude turn out to be
�ZB ¼ 10:7 mm and 0.25 waveguides (¼4 
m), respec-
tively. Note that the diminishing of both ZB period and
ZB amplitude is also accompanied by a lowering of the
transverse beam drift, i.e., of v0. By further increasing the
mismatch �, beam oscillations get basically too small to be
measured, entering in the nonrelativistic regime.
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FIG. 2 (color online). Far-relativistic regime of ZB for � ¼
0:5�. (a) Measured light distribution along the sample and
(b) corresponding numerical simulation. (c) Measured (solid
line) and calculated (dashed line) path of the beam center of
mass hniðzÞ.
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FIG. 3 (color online). Same as Fig. 2, but for � ¼ 1:1�.
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In conclusion, we reported on the first experimental real-
ization of a classical simulator of relativistic quantum me-
chanics, with the observation of an optical analogue of
relativistic Zitterbewegung. Our results suggest that wave-
guide optics could provide an experimentally accessible
classical simulator to test other relativistic effects rooted in
the Dirac equation, such as the dynamical process of pair
production or Rabi oscillations of the Dirac sea [28]. In
future experiments the femtosecond laser waveguide writing
technique can be employed to realize the above mentioned
and further relativistic effects. As compared to other classi-
cal or quantum simulators of the Dirac equation [8,9,20], our
photonic setting enables a direct visualization of the spinor
wave function evolution, without requiring the synthesis of
special optical media with subwavelength controlled prop-
erties nor complex or indirect imaging techniques. On the
other hand, optical waveguide arrays are only limited by the
resolution of the setup, which is advantageous for the simu-
lation of larger, in particular, two-dimensional systems,
where numerical simulators also reach computational limits.
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dkjĜðkÞj2 ¼ 1=ð4�Þ has been used.
[25] The broadening of the angular spectrum ĜðkÞ is respon-
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FIG. 4 (color online). Same as Fig. 2, but for � ¼ 2:1�.
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