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We experimentally study the impact of intrinsic and extrinsic curvature of space on the evolution of

light. We show that the topology of a surface matters for radii of curvature comparable with the

wavelength, whereas for macroscopically curved surfaces only intrinsic curvature is relevant. On a

surface with constant positive Gaussian curvature we observe periodic refocusing, self-imaging, and

diffractionless propagation. In contrast, light spreads exponentially on surfaces with constant negative

Gaussian curvature. For the first time we realized two beam interference in negatively curved space.
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Introduction.—Regions of considerably curved space-
time remain inaccessible for a direct experimental inves-
tigation, but have been subject to extensive theoretical
research. The interplay between space-time curvature and
electromagnetic wave dynamics is claimed to provoke
intriguing effects like the generation of Hawking radiation
[1] or the Unruh effect [2]. The extreme conditions neces-
sary to witness these phenomena are not found in the
vicinity of Earth. Consequently, since the work by Unruh
[3] several approaches have promoted analog models of
curved space-time, which share particular features and
allow for an investigation of resulting phenomena in the
laboratory. In this vein, systems like the Bose-Einstein
condensate [4] and optical solitons in glass fibers [5] are
interpreted as dynamical systems on a background repre-
senting an effective space-time metric.

On the other hand, the formalism of general relativity
(GR) has become an appealing tool to cope with the
manipulation of light. Transformation optics utilizes the
covariant formalism to design novel devices by pointing
out the equivalence in Maxwell’s equations between space-
time curvature and a modulation of the refractive index of
the transmitting medium [6–9]. This modulation is
achieved experimentally by artificial metamaterials, which
until now are very hard to assemble and are often con-
nected to severe losses during the propagation. It was
recently proposed to use metamaterials to mimic a nonflat
space-time [10].

In our work we refrain from refractive index modulation.
We choose a more direct, geometric approach to study the
consequences of space curvature on the evolution of light.
To this end we abandon one spatial dimension and inves-
tigate light propagation on specifically shaped two-
dimensional surfaces, as introduced in [11].

Geometry of surfaces.—Picture a surface S embedded in
three-dimensional Euclidean space. For every regular point

P on the surface two tangent circles with maximal and
minimal radii R1 and R2 can be found. The Gaussian
curvature K at P is then defined as K ¼ �1�2, where
�1;2 ¼ 1=R1;2 are the principal curvatures. For tangent

circles facing opposite sides of the surface, K is negative.
The extrinsic curvature H is given by H ¼ ð�1 þ �2Þ=2.
Proper lengths on curved surfaces are determined by means
of the two-dimensional metric tensor ðgijÞ according to

ds2 ¼ gijdx
idxj, where i; j ¼ x; z are coordinates parame-

trizing the surface of interest. The Gaussian curvature K
depends on neither the actual embedding nor on the topol-
ogy of the surface, but on the metric (gij) alone—and

vice versa [12]. The extrinsic (or mean) curvature H, on
the other hand, is not an invariant with respect to the
topology.
When neglecting polarization effects, the evolution of

monochromatic light bound to an arbitrarily shaped two-
dimensional layer can be described by the scalar
Helmholtz equation [11,13]

ð�g þ k2Þ� ¼ �ðH2 � KÞ�: (1)

Here k ¼ 2�n0=� is the wave number of light with wave-
length �, propagating in a material with refractive index
n0. All the experiments in this work were performed at � ¼
633 nm. The scalar formulation is justified by the experi-
ments, which show no dependence on the polarization. The
covariant Laplacian �g ¼ ð1= ffiffiffi

g
p Þ@i ffiffiffi

g
p

gij@j, with i; j ¼
x; z, is given as a function of the metric tensor elements
gij and g ¼ detðgijÞ, and thus depends on the Gaussian

curvature only. [The explicit dependence for macroscopi-
cally curved surfaces can be derived from Eq. (2) or found
in [11].]
Influence of the extrinsic curvature.—As an example for

the influence of the topology of the surface, represented by
the extrinsic curvatureH, we studied light propagation in a
microscopically undulated waveguide [see Fig. 1(a)]. It
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was realized via the femtosecond direct-writing method
[14]. High power femtosecond pulses are focused into bulk
fused silica yielding an increase of the material’s refractive
index in the focal region [15,16]. Because of the use of a
special fused silica with a high content of hydrogen, the
writing process causes a massive foundation of nonbridg-
ing oxygen-hole color centers in the waveguide region.
When excited by the guided beam, their fluorescence is
imaged by scanning a microscope objective along the
sample. For a detailed description of excitation and detec-
tion procedures, see, e.g., [17].

The manufactured waveguide has a sinusoidal cross
section and consequently a vanishing Gaussian, but notice-
able extrinsic curvature varying periodically in the trans-
verse direction. With an undulation amplitude of 4 �m, an
undulation period of 30 �m, and a thickness of 10 �m, the
extrinsic curvatureH is 2 orders of magnitude smaller than
k. This is comparable with a refractive index change on the
order of 10�5, which as known from nonlinear optics
influences the diffraction behavior considerably [18].
Having no Gaussian curvature, the metric of flat space is
reproduced and �g becomes the common Laplacian. Only

H2 remains acting like an effective potential in the wave
equation. The experimentally observed diffraction pat-
tern [Fig. 1(c)] is in agreement with simulations based on
Eq. (1) [Fig. 1(d)]. It reveals that light does not smoothly
diffract as in flat space [Fig. 1(b)]. The diffraction pattern
resembles that occurring in a periodic lattice [19], which
now arises from the periodicity of H2 only. The extrinsic
curvature realizes thus a kind of topological photonic
crystal [20].

Influence of the intrinsic curvature.—For macroscopic
radii of curvature the influence of the right-hand side of

Eq. (1) can be neglected, since k2 dominates over H2 and
K. The Gaussian curvature K still affects the beam evolu-
tion via the covariant Laplacian on the left-hand side. For
convenience and as a natural generalization of flat
Euclidean space, we restrict ourselves to rotationally sym-
metric surfaces of constant Gaussian curvature now. From
the point of view of confined light beams, these surfaces
are highly symmetric, namely, locally invariant under
translation and rotation. Therefore, they are an optical
realization of the cosmological principle, which states
that space is homogenous and isotropic. This feature makes
optics on curved surfaces a powerful tool for beam shap-
ing, since it is in strong contrast to photonic crystals or
structures with graded refractive index, where there is al-
ways a preferred direction involved in the design.
One has to be cautious when using the covariant formal-

ism of GR, because any statement must be treated in the
light of the chosen coordinates. Since we are dealing with
rotationally symmetric surfaces only, we conveniently
chose an orthogonal set of coordinates varying in proper
lengths along the contour and the rotation angle of the
solids of revolution (see [11]). However, while all equa-
tions must be understood for propagation along a certain
direction, the physics is rotationally invariant and the
stated evolution holds for other directions, too. Two solids
with negatively curved surfaces were fabricated to allow
for equal propagation lengths in different directions and
to emphasize that equivalence [see insets of Figs. 4(a) and
4(c)].
Depending on the sign of Gaussian curvature, the met-

rics in the chosen set of coordinates read [11]

ds2 ¼ dx2 þ cos2qðx=RÞdz2; (2)

where we introduced the notation cos1 ¼ cos, cos�1 ¼
cosh, with q ¼ sgnðKÞ (analog for sinq). Here R ¼
1=

ffiffiffiffiffiffiffijKjp
is the geometric mean radius defined by the

Gaussian curvature K. As long as a paraxial approximation
can be applied, Gaussian beams maintain a Gaussian shape
even in the presence of curvature. Analytical expressions
describing the evolution of the beam width � with respect
to the propagation length z are [11]

�qðzÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qð1� q�4

S=�
4
0Þsin2qðz=RÞ

q
; (3)

where �0 is the initial beam width and �S ¼ ffiffiffiffiffiffiffiffiffi
R=k

p
is a

characteristic beam width defined by the surface itself.
Following Eq. (2), which relates proper lengths to coordi-
nates, the beam evolution can be explained by a compres-
sion or stretching of the wave vector components parallel
to the propagation direction for x � 0. This corresponds to
a redshift and blueshift in GR for negatively and positively
curved surfaces, respectively.
Different solids with macroscopically curved surfaces

were produced by means of high precision diamond turn-
ing (see Fig. 2). The simplest solids with positively curved
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FIG. 1 (color online). The cross section in (a) is a microscope
image of the undulated waveguide. (b) Comparison between
experiment (solid black line) and simulation [solid gray (red)
line]. Values are taken at half the total propagation distance
displayed in (c) and (d). The dashed gray (green) line represents
H2, serving as an effective potential. (c) Directly monitored light
propagating in the layer. The initial beam width �0 is about
10 �m and the total propagation length is 25 mm. Clearly the
nonuniform diffraction is visible, resulting from the variation of
the extrinsic curvature H. (d) Simulation of (c) based on Eq. (1).
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surfaces are spheres. For our experiments we used spheres
and half-spheres which were made of BK7 glass. They had
a radius of R0 ¼ R ¼ 1:25 cm representing a Gaussian
curvature of K ¼ 0:64 cm�2. In the case of the half-sphere
a laser beam was impinging on the end face close to the
edge. To couple light into the full sphere a coupling prism
(SFL11 glass with n0 ¼ 1:785) was used, aided by a small
drop of immersion liquid (n0 ¼ 1:638) to increase cou-
pling efficiency and allow for a wider range of initial beam
widths at the surface. The beam is then guided inside the
glass tangent to the surface by total internal reflection. A
camera was rotated around the sample to detect the scat-
tered light. After removing aberrations inevitably caused
by imaging a curved surface, all camera images were
composed to a single figure.

When launching a highly focused beam (�0 � 1 �m)
we observe a refocusing after a distance corresponding to
half the circumference of a sphere [Figs. 3(a) and 3(b)].
This is in strong contrast to a flat surface. On a sphere
the distance between two opposite points is always the
same, no matter into which direction light travels. Hence,
constructive interference must occur. As light cannot
sense a macroscopic topology, the same phenomenon oc-
curs on a bulge with equal K after the same propagation
length, which is then different from half a round-trip [see
Fig. 2(a)]. When a broad beam is launched into the system,
light already focuses after one-quarter of a round-trip,
since now the evolution starts after 1=4 of the oscillation
period [Figs. 3(c) and 3(d)]. Still, the initial light distribu-

tion is exactly imaged after half the circumference of a
sphere. This imaging property of positively curved sur-
faces has in the past inspired some applications in radar
techniques [21] and ray optics based geodesic lenses [22].
It is also reminiscent of that found in materials with special
refractive index profiles (like Maxwell’s fish-eye lens [23],
which emulates the properties of a sphere in flat space). As
the field evolution depends on the shape of the initial field,
the natural question arises of whether or not an intermedi-
ate beam width exists for which light propagates without
diffraction. Following Eq. (3) a whispering gallery mode is
excited for a beam width �0 ¼ �S [Figs. 3(e) and 3(f)].
Note that our system is highly symmetric. In contrast to,
e.g., photonic crystals [24], diffraction free propagation
can be realized for arbitrary frequencies and every propa-
gation direction.
On negatively curved surfaces, light experiences an ever

expanding space during propagation and every field distri-
bution spreads exponentially. The bodies with negatively
curved surfaces were fabricated from bulk aluminum and
later covered with a high index immersion liquid (n0 ¼
1:518) of a few 100 �m thickness acting as a waveguide.
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FIG. 2 (color online). (a),(b) Simulated propagation of an
initial Gaussian beam on a positively and negatively curved
surface. Refocusing on the bulge occurs after the same propa-
gation length as on a sphere with equal K. The beam refocuses
4 times during propagation, for the arc length was chosen to
be twice as long as that of the sphere. (c),(d) Experimental
realizations of light propagation on a sphere and a hyperbolic
surface. Since the beam evolution does not depend on the
propagation direction, the same exponential spreading is ob-
served in (b) and (d).
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FIG. 3 (color online). Diffraction of a beam on a positively
curved surface (R ¼ 1:25 cm). Propagation on the sphere for
(a) a focused beam (�0 ¼ 1:1� 0:1 �m<�S), (c) a broad
beam (�0 ¼ 561:3� 69:2 �m>�S), and (e) the stationary
width (�0 ¼ 37:4� 4:2 �m, whispering gallery mode). The
ecliptic in (a) and (c) is due to the camera being turned out of
the equatorial plane to avoid disturbing stray light from the back
side of the sphere. (b),(d),(f) Measured evolution of the beam
width (circles) from a column-wise Gaussian fit of (a), (c), and
(e), compared to the corresponding theoretical prediction [gray
(blue) lines] based on Eq. (3). The values reveal a resolution
limit of the measuring method.
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The light was coupled into the film by using single mode
glass fiber tips dipping into the film tangential to the
surface. The scattered light was observed as in the case
of the positively curved surface, skewing the images in
such way that the final x and z direction represent our set of
coordinates. To emphasize the equivalence of various em-
beddings in terms of beam evolution, we designed two
different solids with negatively curved surfaces. Both sur-
faces had a constant negative Gaussian curvature of K ¼
�0:64 cm�2 [see insets of Figs. 4(a) and 4(c)]. The ex-
perimentally observed exponential spreading is shown in
Figs. 4(a)–4(d). Obviously, light experiences a repelling
potential everywhere. Rays follow exponentially separat-
ing geodesics and no stationary state exists nor does any
recovery occur. This phenomenon is even better visualized
by launching two beams parallel in a distance d and
monitoring the resulting interference pattern. While in
flat space the distance between interference fringes of
two beams increases linearly for z > d with the propaga-
tion length, on surfaces with negative Gaussian curvature
interference fringes correspond to separating geodesics

with the distance between minima �xmin approximately
scaling like expðz=RÞ for z=R > 1 [see Fig. 4(e)]. The
experimentally observed fringe pattern is in good agree-
ment with the theoretical prediction [Fig. 4(f)].
Conclusion.—We experimentally monitored the light

evolution on curved surfaces and demonstrated how light
is strongly influenced by the curvature, even if translational
symmetry is still maintained. We showed that the extrinsic
curvature matters only when light recognizes the surround-
ing space. Schemes and results presented in this work
provide a first step towards a thorough experimental inves-
tigation. Also, nonlinear phenomena such as solitons can in
principle be investigated in curved spaces [25]. Hence, the
ideas proposed here open up many possibilities to improve
the manipulation of light, construct analog models of
general relativity, investigate critical orbits or even quan-
tum billiards in curved spaces [26].
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FIG. 4 (color online). Diffraction of beams on negatively
curved surfaces (R ¼ 1:25 cm). Propagation along (a) rotation
angle (�0 ¼ 1:3� 0:1 �m) and (c) contour (�0 ¼ 1:5�
0:2 �m). (b),(d) Measured evolution of the beam width (circles)
of (a) and (c) compared to the theoretical prediction (solid red
lines) based on Eq. (3), which is distinct from the evolution in
flat space for the same initial excitations (dashed green lines).
(e) Interference pattern of two beams launched in a distance d ¼
2:2 mm on the same surface as in (c). (f) Tracking the distance
between two adjacent intensity minima [white arrows in (e)] and
fitting with an exponential function (solid red line) we obtain
R ¼ 1:24� 0:16 cm in agreement with the nominal value.
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