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We show that the central charge of the Liouville and Toda theories of type A, D, and E can be

reproduced by equivariantly integrating the anomaly eight-form of the corresponding six-dimensional

N ¼ ð0; 2Þ theories, which describe the low-energy dynamics of M5-branes.
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Introduction.—N ¼ 2 supersymmetric field theories in
four dimensions are very rich, from both the physical and
mathematical points of view. Recently, it was observed in
Ref. [1] that manyN ¼ 2 theories can be understood in a
unified manner by realizing them as a compactification of
six-dimensional N ¼ ð0; 2Þ theories on a Riemann sur-
face. Furthermore, it was noted in Ref. [2] that Nekrasov’s
partition function [3] of such theories [with SUð2Þ gauge
groups] computes the conformal blocks of the Virasoro
algebra. It was also noted that the partition function on S4,
as given by Ref. [4], coincides with the corresponding
correlation function of the Liouville theory. Soon this
2D–4D correspondence was extended in Refs. [5,6] to
the case of SUðNÞ gauge groups where the Liouville theory
generalizes to the AN�1 Toda theory [7].

Given that these 4D theories are engineered from theo-
ries onM5-branes, one would like to understand the above
correspondence in terms of string or M theory. A step in
this direction was made in Refs. [8,9]. Hinted at by the
results of Refs. [5,10], in Ref. [9] an interesting observation
was made, namely, that the anomaly eight-form of the 6D
N ¼ ð0; 2Þ theory of type AN�1 and the central charge of
the Toda theory of the same type have similar structures:

I8½AN�1� ¼ ðN � 1ÞI8ð1Þ þ NðN2 � 1Þp2ðNÞ=24; (1)

cToda½AN�1� ¼ ðN � 1Þ þ NðN2 � 1ÞQ2: (2)

In this Letter, we show that (2) with the correct value for
Q, namely, Q ¼ ð�1 þ �2Þ2=ð�1�2Þ, arises from (1) if we
consider the compactification of the 6D (0, 2) theory on R4

with equivariant parameters �1;2. Furthermore, we will see

that this relation works for arbitrary theories of type A, D,
and E.

Computation.—The anomaly eight-form of one
M5-brane [11] is

I8ð1Þ ¼ 1
48fp2ðNWÞ � p2ðTWÞ þ 1

4½p1ðTWÞ � p1ðNWÞ�2g;
(3)

where NW and TW stand for the normal and the tangent
bundles of the worldvolume W, respectively, and pk

denotes the kth Pontryagin class. By using this, the ano-
maly of theN ¼ ð0; 2Þ theory of typeG (G ¼ An;Dn; En)
can be written as [12–15]

I8½G� ¼ rGI8ð1Þ þ dGhG
p2ðNWÞ

24
: (4)

Here rG, dG, and hG are the rank, the dimension, and the
Coxeter number of the Lie algebra of type G, respectively.
They are tabulated in Table I.
Now, we wrap the (0, 2) theory of type G on a four-

manifold X4. The 11D theory lives on:

�� X4 � R5;

where � is the worldsheet of the resulting 2D theory. We
take X4 to be Euclidean and � to be Lorentzian. The
supercharges decompose as

4þ � 4 ! ð12; 2; 1; 2; 12Þ þ ð12; 2; 1; 2;�1
2Þ þ ð�1

2; 1; 2; 2;
1
2Þ

þ ð�1
2; 1; 2; 2;�1

2Þ;
where we listed the representation contents under the
decomposition

SO ð5; 1Þ � SOð5Þ ! SOð1; 1Þ � SUð2Þl � SUð2Þr
� SOð3Þ � SOð2Þ:

Here we have decomposed SOð4Þ ’ SUð2Þl � SUð2Þr and
SOð5Þ � SOð3Þ � SOð2Þ. The symplectic Majorana
condition acts on each factor separately.

TABLE I. Data of the Lie algebras of type A, D, and E. Note
that rGðhG þ 1Þ ¼ dG.

G rG dG hG

AN�1 N � 1 N2 � 1 N
DN N Nð2N � 1Þ 2N � 2
E6 6 78 12

E7 7 133 18

E8 8 248 30
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Let us twist R5 over X4 so that a fraction of the super-
symmetry remains. We embed the spin connection of the
SUð2Þr factor into the SOð3Þ factor, that is,

SU ð2Þr ! diagonal part of ½SUð2Þr � SOð3Þ�: (5)

Note that the SOð3Þ factor is the standard SUð2ÞR symme-
try of the four-dimensional theory if we think of the setup
as the compactification of the six-dimensional theory on�,
giving an N ¼ 2 theory on X4. Therefore this twist is the
one used by Ref. [16].

After the twist, we get the symmetry group SOð1; 1Þ �
SUð2Þl � SUð2Þr � SOð2Þ and supercharges

ð12; 2; 2; 12Þ þ ð12; 2; 2;�1
2Þ þ ð�1

2; 1; 1þ 3; 12Þ
þ ð�1

2; 1; 1þ 3;�1
2Þ:

The preserved supercharges [scalars under SUð2Þl�
SUð2Þr] form a two-dimensionalN ¼ ð0; 2Þ superalgebra,
with Uð1Þ R symmetry [17].

Let us exploit this 2DN ¼ ð0; 2Þ superalgebra. We take
the right movers to be the supersymmetric side. It is known
that the anomaly polynomial and the central charges are
related via

I4 ¼ cR
6
c1ðFÞ2 þ cL � cR

24
p1ðT�Þ; (6)

where F is the external Uð1Þ bundle which couples to the
Uð1ÞR symmetry. Let us check this formula against free
multiplets. The anomaly polynomial of a right-moving
complex Weyl fermion with charge q is

I4 ¼ chðqFÞÂðT�Þj4 ¼ q2

2
c1ðFÞ2 � p1ðT�Þ

24
: (7)

The right-moving chiral multiplet has one complex boson,
whose anomaly is the same as that of two neutral Weyl
fermions, and one Weyl fermion with charge 1. In total,
I4 ¼ c1ðFÞ2=2� p1ðT�Þ=8 with ðcL; cRÞ ¼ ð0; 3Þ. On the
other hand, the left-moving free real boson has I4 ¼
p1ðT�Þ=24 with ðcL; cRÞ ¼ ð1; 0Þ. Both cases agree
with (6).

Now let us determine I4 of the compactified theory by
integrating I8 over X4. Let us assign the Chern roots as
follows: �t for the tangent bundle of �; ��1, ��2 for the
tangent bundle of X4; and �n1, �n2, 0 for the normal
bundle. We include the Uð1Þ R symmetry through

n1 ! 2c1ðFÞ;
and the twisting (5) introduces

n2 ! �1 þ �2: (8)

Note that the doublet of SUð2Þr has the Chern roots
�ð�1 þ �2Þ=2. ðn2; 0;�n2Þ should then be the Chern roots
of the triplet, resulting in (8).

Then we evaluate the anomaly polynomial. Notice that
�1 and �2 will be integrated over X4. Since the 2D space-
time effectively behaves as four-dimensional inside the

anomaly polynomial, forms whose degree along T� is
higher than four automatically vanish. We get

I4 ¼
�
rG þ 2dGhG

12

Z
ð�2

1 þ �2
2Þ

þ 3rG þ 4dGhG
12

Z
�1�2

�
c1ðFÞ2

�
�
rG
48

Z
ð�2

1 þ �2
2Þ þ

rG
48

Z
�1�2

�
p1ðT�Þ:

Translating to cL;R using (6), we find

cR ¼ 1
2½P1ðX4Þ þ 3�ðX4Þ�rG þ ½P1ðX4Þ þ 2�ðX4Þ�dGhG;

cL ¼ �ðX4ÞrG þ ½P1ðX4Þ þ 2�ðX4Þ�dGhG: (9)

Here �ðX4Þ ¼
R
X4
eðX4Þ is the Euler number of X4, and

P1ðX4Þ ¼
R
X4
p1ðX4Þ is the integrated first Pontryagin

class which is 3 times the signature of X4.
For example, let us wrap one M5-brane on X4 ¼ K3, in

which case there is effectively no twisting. We start
from I8ð1Þ instead of I8½G�, which effectively means using
rG ¼ 1 and dGhG ¼ 0 in (9). Using P1ðK3Þ ¼ �48 and
�ðK3Þ ¼ 24, we obtain

cL ¼ 24; cR ¼ 12;

which is the value for the heterotic string, as it should be.
The case we are most interested in is X4 ¼ R4, consid-

ering the characteristic classes in the equivariant sense
[19]. We take the action of Uð1Þ2 to rotate two orthogonal
two-planes in R4 and call the equivariant parameters �1;2,
respectively. The Chern classes of the two two-planes are
�1;2. Thus we have p1ðTR4Þ ¼ �21 þ �22 and eðTR4Þ ¼
�1�2. We then use the localization formula, in the case
where the fixed points are isolated:

Z
M
� ¼ X

p

�jp
eðNpÞ :

The summation is over the fixed points p, and eðNpÞ is the
equivariant Euler class of the normal bundle of p insideM.
In our case the only fixed point is the origin. Therefore
we have

P1ðR4Þ ¼ �21 þ �22
�1�2

; �ðR4Þ ¼ 1: (10)

Applying (9), we find

cR ¼ �21 þ 3�1�2 þ �22
2�1�2

rG þ ð�1 þ �2Þ2
�1�2

dGhG;

cL ¼ rG þ ð�1 þ �2Þ2
�1�2

dGhG:

(11)

Upon the identification �1=�2 ¼ b2 advocated in
Ref. [2], cL perfectly agrees with the central charge of
the conformal Toda theory of type G [21]:
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cToda½G� ¼ rG þ
�
bþ 1

b

�
2
dGhG: (12)

Discussion.—A couple of comments are in order. First,
recall that in the construction of Ref. [1] the N ¼ 2
theories are obtained by wrapping M5-branes on R4 � �,
with a suitable twist on � which preserves one-half of the
supersymmetry. So far, we have not taken this twist into
account. When we perform it, the right-moving sector,
which was the supersymmetric part, becomes topological
and so cR ! 0, while cL is untouched and agrees with the
central charge of the Liouville-Toda theories. This is con-
sistent with the fact that Nekrasov’s partition function
computes the chiral half of the Liouville-Toda correlation
functions.

Second, notice that Nekrasov’s partition function was
computed after introducing an equivariant deformation of
R4 by a Uð1Þ2 action with parameters �1;2. More precisely,

the symmetry of the 4D theory is

SO ð4Þ � SUð2ÞR ’ SUð2Þl � SUð2Þr � SUð2ÞR:
The topological theory has a modified Lorentz group

SO ð4Þ0 ’ SUð2Þl � SUð2Þr0 ;
where SUð2Þr0 is the diagonal subgroup of SUð2Þr �
SUð2ÞR. The Uð1Þ2 used in the equivariant deformation is
the Cartan subgroup of this modified SOð4Þ0. This moti-
vated our choice in (5). In view of this, it is also reasonable
to evaluate the anomaly polynomial in the same equivari-
ant sense [22]. It would be nice to have a better under-
standing of this point.
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Appendix: Central charges of Sicilian gauge theories of
type A,D, and E.— In Ref. [10] the central charges a and c
of the 4D superconformal Sicilian theories of A type
(obtained by wrapping M5-branes on a genus-g Riemann
surface), both in the N ¼ 2 and N ¼ 1 case, were
computed from the 6D anomaly polynomial. We observe
that from (4) the computation can be performed for the A,
D, and E types.

Let us start with the N ¼ 2 case. By using the same
Chern roots as before, the line bundle of the N ¼ 1 R
symmetry is incorporated by n1 ! n1 þ 2

3 c1ðFÞ,
n2 ! n2 þ 4

3 c1ðFÞ. N ¼ 2 supersymmetry requires n1 þ
t ¼ 0, n2 ¼ 0. The integral over the Riemann surface isR
� t ¼ 2� 2g.
The 4D ’t Hooft anomalies of Uð1ÞR are read from the

formula

I6 ¼ trR3

6
c1ðFÞ3 � trR

24
c1ðFÞp1ðT4Þ: (A1)

Comparing this with the integral of I8, we get

trR3 ¼ 2
27ðg� 1Þð13rG þ 16dGhGÞ;

trR ¼ 2
3ðg� 1ÞrG:

(A2)

Using the standard relations between a, c and trR, trR3, we
get

a ¼ ðg� 1Þ 5rG þ 8dGhG
24

;

c ¼ ðg� 1Þ rG þ 2dGhG
6

:

(A3)

This agrees with Ref. [23] for the A series, and with
Ref. [24] for theD series. Similar formulas can be obtained
in the N ¼ 1 case. The R symmetry bundle is incorpo-
rated by n1 ! n1 þ c1ðFÞ and n2 ! n2 þ c1ðFÞ, while
N ¼ 1 supersymmetry requires n1 þ n2 þ t ¼ 0. We get

a ¼ ðg� 1Þ 6rG þ 9dGhG
32

;

c ¼ ðg� 1Þ 4rG þ 9dGhG
32

:

(A4)
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