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We propose dynamic nonlinear equations for free thin fluid films. The obtained numerical solutions

display a number of features consistent with recent experiments with fluid films under large deformations.

In particular, we observe dynamic thickening. Our analysis is based on a two-dimensional model. The

film’s thickness is represented by the two-dimensional density �. We show that a broad range of effects

can be captured by a proper internal energy function eð�Þ.
DOI: 10.1103/PhysRevLett.105.137802 PACS numbers: 68.15.+e, 68.18.�g, 75.70.�i

Introduction.—Fluid films display an astonishing array
of physical effects: static and dynamic, macroscopic and
nanoscale—at times, simultaneously in a single film. Static
effects go well beyond the study of minimal surfaces, as
films display variations in thickness, surfactant density, and
interaction with external fields [1]. Predictably, the dynam-
ics is even richer. Fluid films display turbulence [2–5],
tremendous variations in thickness [3,4,6], the Marangoni
effect [7], draining and reverse draining [8], ejection of
droplets [9], rupture [10], self-adaptation [11], and chaotic
behavior [12].

Only a small fraction of the dynamic effects can be
described by linear models which often lead to the classical
wave equation solved on the equilibrium configuration
[13–15]. The rest require deeply nonlinear analysis, as
fluid films undergo large deformations and variations in
thickness.

With respect to nonlinear oscillations, we were particu-
larly intrigued by the experimental results of Boudaoud
et al. [11] and Drenckhan et al. [9]. Both studies observed
variations in thickness at large amplitudes. In [9], ejection
of droplets was reported. In [11], concentration of thick-
ness at the antinodes of oscillations was observed and a
nonlinear theoretical explanation was presented. We set out
to take a more general approach to modeling fluid films.
We consider the general dynamic behavior of free fluid
films under arbitrarily large deformations from the equi-
librium configuration. Even though our model is inertial
and excludes a driving mechanism, we predict variations in
density consistent with experiments reported in [9,11].

In order to focus our attention on the nonlinear phe-
nomena, we purposefully choose a simplified model. We
treat the fluid film as a two-dimensional continuum S and
represent its thickness by a two-dimensional density func-
tion �. Since the fluid is essentially incompressible in the
three-dimensional sense, � is indeed nothing but thickness.
There is strong experimental evidence [16] that this
approach can capture a very broad range of effects.

We assume that the restoring force can be captured by
the proper choice of the internal energy density (per unit
mass) function e and in this work we assume that e is a

function only of �, that is e ¼ eð�Þ. The total potential
energy V is given by V ¼ R

S �eð�ÞdS. The classical

Laplace model for surface tension is obtained by taking

eð�Þ ¼ �

�
; (1)

where � is the surface energy density per unit mass. Here,
we assume that � is uniform, but to allow surface tension
gradients does not pose much of a conceptual challenge.
The assumption that e is a function only of � captures a

wide range of effects. For example, equilibrium fluid films
display the tendency to have uniform thickness. This effect
can be captured by

eð�Þ ¼ �

�
þ �

2
ð�� �0Þ2; (2)

where � is a positive constant and �0 is a constant that may
depend on the total mass of the fluid film. The presence of a
surfactant, such as soap, may essentially impose a mini-
mum thickness. This phenomenon may be captured by an
expression such as

eð�Þ ¼ �

�
þ �

ð�� �minimumÞ3
(3)

that ‘‘discourages’’ the film from approaching �minimum.
A number of phenomena are excluded by the assumption

that e is a function only of �. For example, the modeling of
biological membranes must consider explicit dependence
of e on the curvature tensor [17]. Liquid crystalline films
require explicit dependence on the normal N, a unit direc-
tor vector field l and its surface gradients rl. These and
other generalizations were considered in [18].
Unlike earlier publications [13,14], we allow arbitrarily

large normal velocities of material particles, arbitrarily
large deviations of the film from its equilibrium configu-
ration, and arbitrarily large changes in the film’s thickness.
At the same time, following [13,14], we assume that
tangential velocities are negligible compared to normal
velocities. This assumption results in a crucial simplifica-
tion of the system by reducing the number of unknowns
and equations from four to two. Further, we disregard the
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interaction between the fluid film and the ambient air and
assume no viscous dissipation. It has been argued that
viscous dissipation is negligible [16].

Proposed dynamic system.—We study a free fluid film
that spans a stationary wire contour. As stated previously,
we consider the case where the tangential velocities can be
neglected compared to the normal velocity C. C ¼ 0 at the
contour boundary. We disregard viscosity and interaction
with the ambient air. The fluid that makes up the film in
incompressible in the three-dimensional sense. Therefore,
the two-dimensional density � captures the thickness of
the film.

We place no size restrictions on C and the rate of change
in density �. We analyze a system of partial differential
equations in which the initial configuration S is given along
with the initial values for C and �. The proposed dynamic
equations are

@�

@t
¼ C�� (4a)

@C

@t
¼ ���e�; (4b)

where � is the mean curvature of S and e� means e0ð�Þ.
We define curvature � as the trace of the curvature tensor
with respect to the external normal. For a sphere of radius
R, � ¼ �2=R. Equation (4a) is mass conservation.
Equation (4b) is the normal component of Newton’s sec-
ond law. Equations (4a) and (4b) govern the evolution of
the surface of the film, the normal velocity field C, and the
density field �.

The system (4a) and (4b) is deeply nonlinear.
Nonlinearity comes from several sources: curvature, inter-
play between velocity and density, and, most crucially,
from the deforming surface. Closed form analytical solu-
tions are few and far between even in quasistatic problems
with moving surfaces that often arise in physical problems
with a variational formulation [19,20].

The deformation of the domain precludes an introduc-
tion of time independent Eulerian coordinates as tradition-
ally done in fluid mechanics. Therefore, a complete
analogy with hydrodynamics—a closed system in terms
of velocities and densities—is not possible. Nevertheless, a
great deal of analogy may be achieved by employing the
calculus of moving surfaces which has been used in quasi-
static contexts [19,20].
For the classic Laplace model of surface tension (1), the

system reads

@�

@t
¼ C��; (5a)

�
@C

@t
¼ ��: (5b)

Equations on moving surfaces require a rule for con-
structing surface coordinates at all times. The presented
system assumes that surface coordinates evolve according
to the normal rule: At the initial moment, the surface
coordinates are assigned arbitrarily. Subsequently, the co-
ordinate system evolves in such a way that trajectories of
constant surface coordinates are orthogonal to the surface
of the fluid film. In a sense, normal coordinates are ‘‘or-
thogonal in time’’ and therefore simplify the analysis of
time evolution similarly to the way Cartesian coordinates
simplify spatial analysis.
The presented system focuses on the deformations of the

fluid film in the normal direction and neglects the tangen-
tial components of the velocity field. The proposed equa-
tions are a simplification of the more complicated system
suggested in [18,21] where the derivation was presented on
the basis of the least action principle with the natural
Lagrangian L ¼ 1

2

R
S �ðC2 þ V2ÞdS� R

S �eð�ÞdS. The

general equations read

@�

@t
þ r � ð�VÞ ¼ �C�

@C

@t
þ 2V � rCþ V � BV ¼ � 1

�
�pð�Þ

@V

@t
�NðV �BVÞ þ V � rV � V � rðCNÞ � CrC� 2CBV ¼ � 1

�
rpð�Þ;

(6)

where pð�Þ is defined as

pð�Þ ¼ �2e0ð�Þ: (7)

The additional third vector equation governs the evolution
of the tangential velocity field V. The operator r repre-
sents the surface gradient,N is the unit normal, andB is the
curvature tensor (of which � is the trace).

It can be seen that Eqs. (4a) and (4b) are formally
obtained from the first two equations in (6) by setting

V ¼ 0. Interestingly, the last equation shows that, in
absence of viscosity, normal oscillations described by C
will over time give rise to nonzero tangential velocities.
Properties of the equations.—Equations (4a) and (4b)

satisfy mass conservation and energy conservation, while
the full system of Eqs. (6) additionally conserve two-
dimensional vorticity and circulation around a closed ma-
terial loop. Note, that local mass conservation is evident
from Eq. (4a) since change in area is proportional to mean
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curvature � (and, naturally, to C). Therefore density must
change at the rate of �C��. The first equation in (6) also
captures the influx of fluid due to the tangential flow.

The presented dynamic system leads to a defect in the
implied equilibrium condition. The equilibrium condition
is obtained by setting C to zero in Eq. (4b). The result is

� ¼ 0: (8)

This is the familiar equation that characterizes surfaces of
minimal area. However, this equation says nothing about
the equilibrium distribution of density. Therefore, the
presented dynamic equations lead to the conclusion that
any density distribution can be found in equilibrium as long
as the shape satisfies the zero mean curvature condition (8).

This problem can be overcome, as was suggested by
Gibbs, by applying the principle of minimum energy. The
first variation of the potential energy, subject to conserva-
tion of mass, is given by

�V ¼
Z
S

�
dð�eð�ÞÞ

d�
� �

�
��dS; (9)

where �� is an independent variation of density and � is
the Lagrange multiplier associated with mass conservation.
Equation (9) leads to the equilibrium condition

dð�eð�ÞÞ
d�

¼ �: (10)

In other words, unless the standard surface tension model
(1) is chosen, the equilibrium distribution of � is uniform

� ¼ �0; (11)

where �0 is of course calculated from the total mass. For
the standard surface tension model dð�eð�ÞÞ=d� is identi-
cally zero, causing the defect.

Linear analysis.—We now analyze small oscillations
about stable equilibrium configurations and show that
they are consistent with the existing infinitesimal models.
Let �0 be the equilibrium density configuration, and as-
sume that @�=@t and C are small. Since the equilibrium
value of � is zero, we must also assume that � is small in
the course of small oscillations. Therefore, linearized con-
servation of mass reads

@�

@t
¼ 0: (12)

This equation indicates that for small oscillations, density
remains constant. Therefore the infinitesimal models of
[13,14] are consistent with our framework in the limit of
small oscillations.

The acceleration equation (4b) can be linearized by an
application of the time derivative. The key identity from
the calculus of moving surfaces is

@�

@t
¼ �Cþ CB:B; (13)

where � is the surface Laplacian and B:B represents the
trace of the matrix square of the curvature tensor B.
For surfaces with zero mean curvature, the quantity B:B

equals minus twice the Gaussian curvature K. Therefore,
the linearized acceleration equation reads

@2C

@t2
¼ �A0ð�C� 2CKÞ; (14)

where A0 ¼ �0e
0ð�0Þ. For the standard surface tension

model, A0 ¼ ��=�0. For flat equilibrium configurations,
K ¼ 0 and infinitesimal waves are governed by the wave
equation

@2C

@t2
¼ �A0�C; (15)

consistent with [14].
Numerical computations.—Our numerics focus on

Eqs. (5a) and (5b) for Laplace’s equation of state (1).
This system can be solved by finite differences on regular
meshes. We solve the equations for one-dimensional fluid
films. We do so in order to avoid the numerical artifacts
associated with two-dimensional meshes for which resolu-
tion in space and time is more limited. On the other hand,
one-dimensional simulations cannot be used for accurate
comparisons with existing experimental data. Therefore,
the main goal of this section is to demonstrate that the
proposed equations hold promise for capturing certain
nonlinear features of fluid film dynamics, including thick-
ening. We are yet to attempt numerical solution of the full
system (6).
We first demonstrate that the profile shape and the

frequency of oscillation depend on the amplitude of the
oscillations. Figure 1 shows six profiles at the moments
of largest deviation from the equilibrium for initially flat
[0, 1] configurations, with uniform initial density � ¼ 0:5,
initial velocity fields C ¼ F sin�x with F ¼ 0:5; 1; 2; 3; 4.
The initial configuration was represented by a regular grid
with 201 nodes. The boundary conditions are Cð0Þ ¼
Cð1Þ ¼ 0 for all simulations. We used MATLAB’s ODE45

routine to advance in time. We observe the strong nonlinear
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FIG. 1. Profiles at maximum deformations from equilibrium of
initially flat configurations of length 1, uniform density � ¼ 0:5,
and initial velocity C ¼ F sin�x, where F ¼ 0:5, 1, 2, 3, 4.
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dependence of shape on the initial velocity. Although it is
not indicated in the figure, the observed profiles are not
periodic in time. The following paragraph speaks to this
point as well.

We next illustrate the effect of thickening. For the
sake of higher accuracy and greater confidence that the
observed effect is not a numerical artifact, we again con-
sider a one-dimensional film. It is initially flat, has length 1
and has uniform density of �ðxÞ � 9. The initial velocity
profile is CðxÞ ¼ 0:25 sin�x. Figure 2 shows the density at
the middle point x ¼ 0:5 over a period of 30 nominal
seconds. Figure 2 vividly demonstrates several nonlinear
effects, including nonperiodicity of motion, asymmetry of
motion with respect to the horizontal axis, and, finally, the
growing amplitude in density oscillations. These features
are consistently exhibited for different initial velocity pro-
files as well as varying parameters that control the numeri-
cal schemes.

The proposed equations are shift invariant. Therefore for
periodic initial conditions, there exists solutions that re-
main periodic. Our numerical simulations indicate that
these solution are dynamically stable. Therefore, periodic
solutions display all of the same nonlinear effects within
each period which is qualitatively consistent with available
experiments [9].

Conclusions.—We have put forth a system of nonlinear
equations designed to capture the nonlinear features of the
dynamics of fluid films with large deformations and large
variations in density, both spatial and temporal.
Surprisingly, despite the fact that the proposed system
purposefully disregards the tangential components of the

velocity field, it leads to the growing amplitude in the
oscillations of the density field. This is qualitatively con-
sistent with available experiments [9]. Our numerical
simulations exhibited further nonlinear effects such as
nonperiodicity of oscillations, nonlinear dependence of
shape on the initial velocity, and the emergence of traveling
and reflecting density waves.
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FIG. 2. Evolution of � at the middle point of an oscillating
one-dimensional film of length 1, initially uniform density of
ðxÞ � 9 and initial velocity profile 0:25 sin�x.
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