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We study the magnetic-field-induced quantum phase transition from a gapped quantum phase that

has no magnetic long-range order into a gapless phase in the spin-1/2 ladder compound

bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). At temperatures below about 1 K, the specific

heat in the gapless phase attains an asymptotic linear temperature dependence, characteristic of a

Tomonaga-Luttinger liquid. Inelastic neutron scattering and the specific heat measurements in both

phases are in good agreement with theoretical calculations, demonstrating that DIMPY is the first model

material for an S ¼ 1=2 two-leg spin ladder in the strong-leg regime.
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Gapped ground states comprising singlet pairs of spins
are the prevalent nonmagnetic quantum disordered states in
a variety of antiferromagnetic Heisenberg models [1–3].
Among those models, two-leg spin-1/2 ladders with anti-
ferromagnetic rung and leg exchanges, Jrung and Jleg, are the

simplest whose ground states are yet nontrivial. These states
give way to a Tomonaga-Luttinger liquid (TLL)—a critical
state with fractional S ¼ 1=2 spinon excitations—at a
magnetic-field-driven quantum critical point (QCP) [4].

Although the quantum phase transition at such a QCP
has been extensively investigated theoretically [5–8],
there have been few experimental studies because of the
scarcity of real systems with the right energy scales.
ðC5H12NÞ2CuCl4, which was originally thought to be a
ladder material [9], later turned out to be a frustrated
three-dimensional antiferromagnet [10]. In IPA-CuCl3
[11,12], long-range magnetic order—also known as a
Bose-Einstein condensation of magnons [1,13]—due to
interladder interactions dominates the magnetic-field re-
gion above the QCP. Thus far, the only detailed report of a
TLL in a two-leg spin-1/2 ladder has concerned
ðC5H12NÞ2CuBr4, a strong-rung material with Jleg=Jrung �
0:25 [14,15]. For deeper understanding of ladders, devel-
opment of new materials with a wide range of Jleg=Jrung
will be crucial. Of special interest are materials in the
strong-leg regime, Jleg=Jrung > 1, since quantum fluctua-

tions are more prominent in this regime and as a result the
singlets will be less localized, a state reminiscent of the
resonating valence bond liquid [16,17].

In this Letter, we investigate a magnetic-field-induced
quantum phase transition in ðC7H10NÞ2CuBr4, DIMPY for
short, a new material in which the CuBr�2

4 radicals form

two-leg spin ladders along the crystallographic a axis [18].
Our inelastic neutron scattering (INS) demonstrates that
this compound is a spin-gapped quantum magnet with
excellent one-dimensionality. Our specific-heat measure-
ments reveal the presence of a TLL phase above the critical
field Hc ¼ 3:0ð3Þ T, with no long-range order at least
down to 150 mK. With the aid of perturbative continuous
unitary transformations (PCUTs) and state-of-the-art
density-matrix renormalization-group (DMRG) calcula-
tions, we determine the strengths of the rung and leg
exchanges from the INS results in the gapped phase and
the specific-heat results in the TLL phase with remarkable
consistency, confirming that DIMPY is an ideal S ¼ 1=2
spin-ladder system in the strong-leg regime.
Single crystals of deuterated DIMPY were grown

according to the method described in Ref. [18]. Prompt-
gamma neutron activation analysis measurements showed
that 67% of hydrogen sites are occupied by deuterium.
The zero-field INS experiment was performed on SPINS
at NIST with a single crystal of a 3.5 g mass and a 0.5�
mosaic spread. The measurements were made in the
(h, k, 0) and (h, 0, l) reciprocal-lattice planes with a
standard helium cryostat. The high-field INS experiment
was performed on RITA II at SINQ, PSI. The sample
consisted of two single crystals with a total mass of 2 g
coaligned within 0.6�. The sample was oriented with the
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(h, 0, l) plane horizontal and was cooled in a 15 T vertical-
field cryomagnet. The data rate was increased by employ-
ing a multiblade crystal analyzer and a position sensitive
detector [19]. A Be (or BeO) filter was placed after the
sample to remove high-order contamination, selecting a
final neutron energy of 5.0 (or 3.7) meV. The specific heat
measurements were made with relaxation calorimetry at
the NHMFL, Tallahasse, on a single crystal of an 8.2 mg
mass in fields up to 18 T applied parallel to the c axis.

Figure 1 summarizes the zero-field dispersion measured
at T ¼ 1:5 K by INS along three high symmetry directions
in the reciprocal space [20]. We performed a global fit of
all collected data to a dynamic spin correlation func-

tion with the approximate spin-gap dispersion �ðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ v2sin2½2�ð0:5� hÞ�p

[21], convolved with instru-
mental resolution, finding � ¼ 0:32ð2Þ meV, v ¼
2:36ð4Þ meV. The individual data points shown in the
figure were obtained by fitting a resolution-corrected line
shape to each constant-q (or constant-energy) scan. Note
that Figs. 1(a) and 1(b) are shown on a much finer scale
than Fig. 1(c). Within a scale as small as 20 �eV, disper-
sion is absent along the c direction, and only a very weak
dispersion, if any, of at most 50 �eV is found along the
b direction [22], indicating that DIMPY is an excellent
one-dimensional (1D) system.

We have calculated the dispersion of an S ¼ 1=2 anti-
ferromagnetic Heisenberg (AFH) spin-ladder system,
using PCUTs [23] around the limit of isolated rungs. The
series in x ¼ Jleg=Jrung is obtained in the thermodynamic

limit [24] and is extrapolated in terms of an internal
parameter [25] using Padé resummation, yielding reliable
results for large x especially for q close to the magnetic
zone center. The lines in Fig. 1(c) are the dispersion for
different values of x, calculated in conjunction with the
accurate gap value� ¼ 0:32ð2Þ meV. Best agreement with
the data is obtained for x ¼ 2:2ð2Þ, indicating that DIMPY
is in the strong-leg regime.
Figure 2(a) shows the background-subtracted constant-q

scan at the magnetic zone center (0.5,0,0.9) at T ¼ 1:5 K in
different fields. The background was determined at zero
field by making energy scans at q ¼ ð0:35; 0; 0:9Þ and
(0.65,0,0.9), away from the magnetic zone center, with
the same instrument configuration and by fitting the results
to a Gaussian profile over the range where no magnetic
excitation is present. At zero field, the resolution-limited
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FIG. 1 (color online). Dispersion measured by INS in DIMPY
at T ¼ 1:5 K as a function of h, k, and l. Lines in (a) and
(b) indicate the gap energy. Lines in (c) are from PCUT calcu-
lations for an AFH two-leg spin ladder for different values of
x ¼ Jleg=Jrung.
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FIG. 2 (color online). (a) Background-subtracted constant-q
scan in DIMPY at the magnetic zone center (0.5,0,0.9) at T ¼
1:5 K for magnetic fields H ¼ 0, 5, 8, and 13.5 T.
(b) Background-subtracted constant @! ¼ 0:7 meV scans along
the (h,0,1:7� 1:44h) direction at T ¼ 1:5 K and H ¼ 0 and 5 T.
The dotted line is a guide for the eye. In both frames, solid lines
are fits to a dynamic spin correlation function with the approxi-
mate spin-gap dispersion relation [21], convolved with instru-
mental resolution, and dashed lines indicate zero.
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peak indicates the location of the spin gap. Such a peak is
absent at and above 5 T, indicating that the magnetic field
drives the system into a gapless critical phase.

To examine the magnetic excitation spectra at zero
field and in the gapless phase, constant-energy scans
were performed at T ¼ 1:5 K for @! ¼ 0:7 meV as shown
in Fig. 2(b), where a constant background term has been
subtracted. These measurements were made along the
(h, 0, 1:7� 1:44h) direction to maximize the structure
factor. The q resolution-limited peaks at zero field are
from one-particle excitations. The low-energy feature in
the gapless phase, at 5 T, is clearly much broader than the
experimental resolution, suggesting that it arises from a
two-spinon continuum, not from one-particle excitations.

To augment the INS results, we measured the specific
heat at T < 2:5 K, as shown in Fig. 3. The phonon
contribution was determined from the zero-field entropy
S ¼ RðC=TÞdT and has been subtracted from the data at
all fields. The nuclear-spin contribution has also been
subtracted through a simultaneous fit to the data for all
fields at temperatures below 700 mK.

At zero field and 2 T, exponentially activated behavior is
found, as shown in the first inset to Fig. 3(a), providing
additional clear evidence for a spin gap below a critical
field. The specific heat of a gapped 1D AFH quantum
magnet in the low-temperature limit is given by [26]:

CðTÞ ¼ ~nR

2
ffiffiffiffiffiffiffi
2�

p
�
�

kBT

�
3=2 �

v
e��=kBT; (1)

where ~n is the number of gapped low-energy modes and R
the gas constant. Fitted at kBT � � to this expression, the
zero-field data yield � ¼ 0:32ð1Þ meV—excellent agree-
ment with the INS result—and ~n=v ¼ 1:26ð2Þ [27]. Taking
v ¼ 2:36ð4Þ meV from INS, we find ~n ¼ 3:0ð1Þ, which
unambiguously indicates the threefold degeneracy ex-
pected for a two-leg spin ladder. The field dependence of
� is shown in the second inset to Fig. 3; a linear fit gives
Hc ¼ 3:0ð3Þ T in good agreement with �=ðg�BÞ ¼
2:8ð2Þ T, assuming g ¼ 2:0.
Above Hc, the specific heat shows remarkable behavior.

There is no �-like peak, indicative of a phase transition,
at temperatures down to 150 mK and magnetic fields up to
18 T. Figure 3(b) shows the magnetic specific heat divided
by temperature, Cm=T, at 5, 8, and 18 T. As temperature
decreases, Cm reaches an asymptotic T-linear limit, char-
acteristic of a TLL, before an upward deviation sets
in—probably a precursor of long-range ordering due to
weak interladder interactions [28]. The low-temperature
specific heat of TLL is given by conformal field theory
as [29,30]:

CðTÞ ¼ �

3
R

kBT

vFðHÞ ; (2)

where vF, the Fermi velocity, is the velocity of the gapless
excitations. Using this equation, we extract vF ¼ 2:79ð8Þ,
3.27(11), and 2.89(9) meV, respectively, from the specific
heat at 5, 8, and 18 T.
From these vF and �, we now determine x ¼ Jleg=Jrung

and Jrung. First, we perform DMRG calculations for S ¼
1=2 AFH two-leg ladders [31], in conjunction with finite-
size scaling, and obtain vF=Jleg as a function of g�BH=Jleg
for fixed x [32] and �=Jrung as a function of x [33]. From

this �=Jrung and � ¼ 0:32ð2Þ meV from the zero-field

specific heat and INS, we find Jleg—which is xJrung—for

each x. With these Jleg, we then normalize the experimental

values of vF and plot them with the theoretical results, as
shown for x ¼ 2 and 2.5 in Fig. 4. Finally, comparison of
experiment and theory in this plot yields x ¼ 2:3ð2Þ, for
which �=Jrung ¼ 0:409ð6Þ and thus Jrung ¼ 0:78ð6Þ meV.

To summarize, DIMPY undergoes a quantum phase
transition at Hc ¼ 3:0ð3Þ T from a gapped phase to a
Tomonaga-Luttinger liquid (TLL). Inelastic neutron scat-
tering reveals the excellent one-dimensionality of this ma-
terial and provides a firm value of the spin gap,
� ¼ 0:32ð2Þ meV, as does the specific heat. In the TLL
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FIG. 3 (color online). Magnetic specific heat Cm of DIMPY as
a function of temperature T for (a) H <Hc and (b) H >Hc. In
the latter region, the data have been plotted as Cm=T after
subtracting the nuclear-quadrupole contribution (see Ref. [27]).
vF is extracted from data between 0.3 K and the upper limit of
the T-linear region, indicated by an arrow. Inset (1) Semilog plot
of theH <Hc data against 1=T. Lines are fits to Eq. (1). Inset (2)
Field dependence of the spin gap obtained from the data.
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phase, the specific heat attains characteristic T-linear
behavior, yielding the Fermi velocity vF of the gapless
excitations for the first time in any laboratory TLL. We
obtain Jrung ¼ 0:78ð6Þ meV from � and vF, and the ex-

change ratio x ¼ 2:2ð2Þ from the zero-field dispersion and
2.3(2) from � and vF. These are consistent with previous
estimates, Jrung ¼ 0:75 meV and x ¼ 1:94, from magnetic

susceptibility [18]. Three independent experiments yield-
ing the exchange constants with consistency and in excel-
lent agreement with theory establish DIMPY
unambiguously as the first ideal realization of an S ¼
1=2 AFH two-leg ladder in the strong-leg regime, thus
opening up an avenue for investigating the properties of
such a ladder in this poorly explored regime.
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