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We derive and analyze the effective low-energy theory for interacting electrons in a cylindrical nanowire

made of a strong topological insulator. Three different approaches provide a consistent picture for the band

structure, where surface states forming inside the bulk gap correspond to one-dimensional bands indexed

by total angular momentum. When a half-integer magnetic flux pierces the nanowire, we find a strongly

correlated helical Luttinger liquid topologically protected against weak disorder. We describe how transport

experiments can detect this state.

DOI: 10.1103/PhysRevLett.105.136403 PACS numbers: 71.10.Pm, 73.23.�b, 73.63.�b

The rich and fascinating physics found in certain spin-
orbit coupled materials exhibiting the ‘‘strong topological
insulator’’ (TI) phase currently attracts an enormous amount
of attention [1]. In a TI the bulk has a finite gap �b but
topologically protected surface modes exist inside the gap.
Using Bi2Se3, which presently is the reference material due
to its rather large gap, �b � 0:3 eV, surface probe experi-
ments (ARPES, STM) have provided clear evidence for the
theoretically predicted massless Dirac fermion surface state
with spin and momentum locked together [2]. However,
probing the surface state in transport experiments still poses
a major challenge because residual bulk charge carriers—
either related to disorder or due to unintentional intrinsic
doping—tend to mask the surface contribution even in
the cleanest samples so far available [3]. The surface con-
tribution is easier to extract experimentally in thin-film
geometries [4] or in TI nanowires [5,6], where the surface-
to-volume ratio is more advantageous. In the latter case,
introduction of a magnetic flux � piercing the nano-
wire resulted in an Aharonov-Bohm effect caused by the
surface state.

These recent developments clearly demonstrate the need
for a comprehensive effective low-energy theory of the
electronic properties of TI nanowires, which we formulate
here. Very recent work [7,8] has addressed the effect of
strong disorder for the noninteracting problem. We instead
consider the weak disorder limit but take into account
electron-electron (e-e) interactions in a nonperturbative
way. We obtain the band structure of a cylindrical TI nano-
wire from three different approaches: (i) using the low-
energy approach of Zhang et al. [9], (ii) from the distorted
diamond lattice model with spin-orbit couplings introduced
by Fu et al. [10], and (iii) using a surface Dirac fermion
theory [11,12]. Taken together, these calculations draw a
consistent picture for the surface states inside the bulk gap,
even for very thin nanowires: a one-dimensional (1D) elec-
tron waveguidewith modes indexed by the half-integer total
angular momentum j is formed, where each mode contains

a right and a left mover. The spin direction is always
tangential to the surface and perpendicular to the momen-
tum. For integer flux � (in units of the flux quantum), we
have an even number of massive 1D Dirac fermion modes,
unlike the case of carbon nanotubes [13,14]. This allows for
impurity backscattering, and with e-e interactions one has
standard disordered Luttinger liquid (LL) behavior [15,16],
where the SUð2Þ spin symmetry is broken. The case of half-
integer � is more intriguing. Here an emergent time rever-
sal symmetry for the surface states results in an odd number
of modes topologically protected against weak disorder.
With interactions this yields a helical Luttinger liquid. In
the simplest single-mode case, the spin polarization of a
right (left) mover has a counterclockwise (clockwise) ori-
entation around the waist of the cylinder. The helical LL has
been described previously [17,18] as edge mode of the 2D
‘‘quantum spin Hall’’ (QSH) topological insulator realized
in HgTe=CdTe quantum well structures [19]. However, it
has been difficult to reveal the QSH helical LL experimen-
tally, since usually the edges living on opposite boundaries
both contribute. While more complicated setups involving
junctions of different QSH systems have been suggested
[20], the situation is unique for a TI nanowire at half-integer
�: the fermion doubling theorem [17] is circumvented and,
effectively, just one QSH edge can be realized. This simpler
realization of a helical LL should allow for clear signatures
in transport experiments.
Let us start with the band structure of a clean noninter-

acting cylindrical nanowire for � ¼ 0. First, we employ
the low-energy approach of Zhang et al. [9] where, ex-
panding up to order k2 in momentum around a suitable
symmetry point, e.g., the � point in Bi2Se3, the bulk TI
Hamiltonian consistent with time reversal symmetry plus
inversion and rotation symmetry has the form

HZ ¼ �0ðkÞ�0�0 þMðkÞ�0�z þA1kz�z�x

þA2�xðkx�x þ ky�yÞ: (1)
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The z direction defines the anisotropy axis, �0ðkÞ ¼ Cþ
D1k

2
z þD2k

2
?, MðkÞ ¼ M0 þ B1k

2
z þ B2k

2
?, and k2? ¼

k2x þ k2y. We use Pauli matrices � for spin and � for parity

(orbital) space; �0 and �0 denote the identity. The TI phase
is realized for M0B1;2 < 0, and we take parameters for

Bi2Se3 as quoted in Ref. [9]. For a nanowire along the êz
direction [we use cylindrical coordinates with unit vectors
êr ¼ ðcos�; sin�; 0Þ and ê� ¼ ð�sin�; cos�; 0Þ, and put

@ ¼ 1], rotation symmetry in the xy plane implies conser-
vation of total angular momentum Jz ¼ �i@� þ �z=2,

with half-integer eigenvalues j. For nanowire radius R,
we require the wave function to vanish at the boundary
r ¼ R, which is automatically ensured by expanding in the
orthonormal set of radial functions [21]

umnðr < RÞ ¼
ffiffiffi
2

p
RJmþ1ð�mnÞ Jm

�
�mn

r

R

�
;

where �mn is the nth zero of the Bessel function Jm with
integerm. For given (k � kz, j), we expressHZ in the basis
jn; �; �i, where � ¼ �(� ¼ �) denotes the eigenvalue of
�z (�z) and the associated radial function is uj��=2;nðrÞ.
Some algebra gives

HZjn��i ¼ ð�0ðkÞþMðkÞ�Þjn��iþA1k�jn;�;��i

þ 2iA2

R

X
n0

�jþ�=2;n0�j��=2;n

�2
jþ�=2;n0 ��2

j��=2;n

jn0;��;��i

(2)

with the substitution k? ! �j��=2;n=R in �0ðkÞ and MðkÞ.
Numerical diagonalization then yields topologically pro-
tected surface modes. A typical band structure and spin
(particle) density profiles are shown in Fig. 1. Evidently all
surface modes have a finite gap. States with (k, j) and
(�k, �j) form a Kramers degenerate pair, and for given
k, the �j states are degenerate but have opposite sz spin
polarization. We observe that the expectation values of the
spin density operators s�;r;z � 1

2 ê�;r;z � � only depend on

the radial coordinate r. Since then hsri ¼ �@�hs�i ¼ 0,

spin is always oriented tangential to the surface. Moreover,
the spin direction always encloses the angle � ¼ �=2 with
the momentum k ¼ kêz þ ðj=RÞê�. For large jkj, a right

(left) moving surface state then has counterclockwise
(clockwise) spin polarization hs�i> 0 (hs�i< 0).

More microscopically, a TI nanowire can be described
by a tight-binding model for the electronic states in a
diamond lattice with spin-orbit coupling �so [10],

Htb ¼
X
hi;ji

tijc
y
i cj þ

4i�so

a2
X
hhi;jii

cyi ð� � ½d1ij � d2ij�Þcj; (3)

where a is the lattice spacing. To reach the TI phase, a
distortion tij ! tij þ 	t in the nearest-neighbor hopping is

introduced along the (111) direction. The �so term involves
second neighbors and depends on the two nearest-neighbor
vectors d1;2 connecting them. After choosing an axis di-
rection (êz), the wire is formed by all lattice sites located

within radius R. A typical band structure for a nanowire
with R ¼ 5a and êz in the (111) direction is shown in
Fig. 2. The surface states are again characterized by a finite
gap, and spin or particle densities are qualitatively consis-
tent with those shown in the inset of Fig. 1. The radius
dependence of the lowest surface state gap, �sðRÞ, ob-
tained under both approaches is compared in Fig. 3, where
we set the parameter�2tþ 	t inHtb, which is half the gap
in the (111) direction, equal to M0 in Eq. (1). Agreement
between both models at large R is reached by adjusting a to
2.8 nm. We see that even for very thin nanowires, the anal-
ytical prediction �s ¼ v2=R, see Eq. (5) below, agrees
very well with the tight-binding result, while the low-
energy model (2) gives deviations when R< 5 nm. Even
though a k � p expansion of Htb around the L ¼ �

a ð1; 1; 1Þ
point does not match completely with Eq. (1), the
main features of the surface states are equivalent in both
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FIG. 2 (color online). Same as Fig. 1 but using the tight-
binding model on a diamond lattice, see Eq. (3). We take êz
along the (111) axis, R ¼ 5a, �so ¼ t, and 	t ¼ 0:28t. The size
of the unit cell along this direction is dcell ¼

ffiffiffi
3

p
a. Inset: as in

Fig. 1 but for kdcell ¼ 2:9.
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FIG. 1 (color online). Band structure of a TI nanowire with
R ¼ 15 nm obtained by numerical diagonalization of Eq. (2).
Points refer to bulk states, lines to surface states. Inset: Density
h
i (dashed red line) and spin density [hs�i; blue solid line, hszi;
black curve] vs radial coordinate for the right-moving state
ðk; jÞ ¼ ð0:02 �A�1; 1=2Þ.
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descriptions. Similar results are obtained when êz points
along other crystallographic directions.

Both the dispersion relation and the spin texture of the
surface states found under these two approaches are well
reproduced by a model of 2D massless Dirac fermions
wrapped onto the cylinder surface, under the condition
that the spin is tangential to the surface and perpendicular
to the momentum (� ¼ �=2), cf. Ref. [11]. To match the
above numerical results, we also need to take into account
anisotropy, since there are different Fermi velocities v1;2

along the êz;� directions. By supplementing Eq. (1) with

boundary conditions describing a flat 2D surface in the xz

plane, we find v1;2 ¼ A1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðD2=B2Þ2

p
. Taking the pa-

rameters of Ref. [9] for Bi2Se3, v2=v1 � 2. With � ¼
�=2, the surface Hamiltonian takes the form [11]

Hsurf ¼ e�i�z�=2

�
v1k�y �v2

R
�zð�i@� þ�Þ

�
ei�z�=2;

(4)

where we added the dimensionless flux parameter �. We
note that�may include not only the orbital magnetic field,
but also a Zeeman field or an exchange-coupled magneti-
zation due to a nearby magnet (for fields along êz). The
dispersion relation implied by Eq. (4) is

Ek;j;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1k

2 þ v2
2ðjþ�Þ2

R2

s
; (5)

where the � sign refers to conduction and valence band,
respectively. The corresponding eigenstate is

c k;j;�ðz;�Þ� eikzþij�e�i�z�=2

� uk;j;�
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�u2k;j;�

q �
;

uk;j;� ¼ v1kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek;j;�½Ek;j;� þ ðjþ�Þv2=R�

q :

(6)

For integer �, all bands are doubly degenerate and have a
gap 	�s ¼ v2=R. The mass term in the relativistic dis-
persion (5) comes from a Berry phase� due to spin-surface
locking [11,12]. While scattering between Kramers pairs,
ðk; jþ�Þ $ ½�k;�ðjþ�Þ�, is forbidden since the states
(6) have zero overlap, backscattering (k ! �k) for fixed j
is allowed; i.e., potential scattering (disorder) is relevant. A
noninteger flux � lifts the degeneracy, and for half-integer
�, the mass appearing in Eq. (5) vanishes for the special
band j ¼ ��. This feature also appears in the tight-
binding calculation, see inset in Fig. 3. Spin-conserving
single-particle backscattering processes are then forbid-
den, and weak disorder has no effect [22]. When the
chemical potential � is inside the bulk gap, we are thus
guaranteed to have an odd number of modes.
In the remainder, we focus on half-integer �. For sim-

plicity, we consider �<�s and sufficiently weak inter-
actions, where only the single mode j ¼ �� needs to be
retained in a low-energy effective theory. Moreover, we
assume �> 0 so that umklapp e-e scattering can also be
neglected, cf. Ref. [17]. Using the spinors (6), the surface
electron operator �ðz;�Þ is expanded in terms of slowly
varying chiral 1D fermions c r¼�ðzÞ,

�ðz; �Þ ¼ 1ffiffiffiffiffiffiffi
4�

p X
r¼�

eirkFzc rðzÞ r
iei�

� �
; (7)

with the Fermi momentum kF � �=v1. The standard bo-

sonization approach [15] expresses c rðzÞ ’ ð2��Þ�1=2 �
exp½i ffiffiffiffi

�
p ð’þ rÞ� in terms of conjugate phase fields ’ðzÞ

and ðzÞ, where the surface layer width � is the short
distance cutoff for the 1D continuum description. The
noninteracting Hamiltonian is H0 ¼ v1

2

R
dz½ð@z’Þ2 þ

ð@zÞ2�. The density operator, 
ðz; �Þ ¼ �y�, is then
equal to the 1D density, @z=

ffiffiffiffi
�

p
. Similarly, the spin den-

sity operators s� and sz are reduced to a 1D form,

s�
sz

� �
� 1

2
�yðz; �Þ �ye

i��z

�z

� �
�ðz; �Þ

¼ JðzÞ
� 1

�� cos½2kFzþ 2
ffiffiffiffi
�

p
ðzÞ�

 !
: (8)

We observe that s� equals the 1D current density, JðzÞ �
@z’=

ffiffiffiffi
�

p
, reflecting spin-momentum locking. There are no

2kF oscillatory terms in 
 nor in s�. On the other hand, no

‘‘slow’’ terms exist for sz, and we always have hszi ¼ 0.
We now include e-e interactions, assuming that no me-

tallic gates are nearby. Similar to the nanotube case, apart
from a hard-core part, the main contribution to the
(surface-projected) potential can be modeled by [14]

Uðr� r0Þ ¼ e2=�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� z0Þ2 þ �2 þ 4R2sin2½ð���0Þ=2�p ;

where � takes into account the dielectric constant of the
substrate and of the insulating interior part of the nanowire.
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FIG. 3 (color online). Numerical results for the lowest surface
state gap �s vs nanowire radius R, obtained from the low-energy
approach (2) [black circles] and from the tight-binding model (3)
[red squares]. The analytical prediction v2=R, see Eq. (5), is
given as a blue dashed curve. Inset: � dependence of �s for
R ¼ 5a from the tight-binding approach, where the flux is
introduced via Peierls phases.
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Inserting the field operator (7) into the general second-
quantized interaction Hamiltonian yields the 1D expression

He�e ¼ 1

2�

Z
dzdz0Vðz� z0Þ@zðzÞ@z0ðz0Þ (9)

with the effective 1D potential VðzÞ ¼ ð2�Þ�1 �R
2�
0 d�Uðz; �Þ. The explicit form of V is given in

Ref. [14] and has the Fourier transform ~VðqÞ ’ ð2e2=�Þ�
½0:51� lnjqRj� for jqjR 
 1. Hard-core interaction terms
give an additional contribution b

R
dz½ð@zÞ2 � ð@z�Þ2� to

the Hamiltonian, where b depends on microscopic details.
Since b stays marginal under renormalization group trans-
formations, the logarithmic singularity in ~VðqÞ, caused by
the long-ranged Coulomb tail, is expected to dominate in
practice. Approximating q � 2�=L for nanowire length L,
we obtain the single-mode helical LL [17], HhLL ¼
v
2

R
dz½Kð@z�Þ2 þ K�1ð@zÞ2�, where v ¼ v1=K and

K ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e2

��v1
ðln½L=ð2�RÞ� þ 0:51Þ

q ; (10)

with K ¼ 1 without interactions. It is straightforward to
generalize these expressions to b � 0 [15,20]. For L=R �
1000, we find the strongly correlated value K � 0:4 to 0.5
from Eq. (10). We note that K � 0:53 to 0.9 [20] for the
QSH edge in HgTe=CdTe wells.

The helical LL state in a TI nanowire can be identified
through several experimentally observable signatures.
First, we note that the equal-time spatial correlations of

 and s� ¼ J decay as jzj�2. While hszi ¼ 0 remains valid

for arbitrary K, sz correlations show a slow algebraic
power-law decay, hszðzÞszð0Þi / cosð2kFzÞjzj�2K. For
K < 1, we therefore find an ordering tendency towards
spin density wave formation, where spins are oriented
along the nanowire axis êz. Within the standard classifica-
tion of 1D systems [15], the helical LL in a TI nanowire is
thus in a spin density wave phase. As a consequence, the
Ruderman-Kittel interaction among magnetic impurities is
extremely anisotropic [23] and decays only with a slow
power law. At the same time, the absence of 2kF terms in
the density operator implies that no charge density wave
correlations develop at all. Furthermore, the superconduct-
ing order parameter describing singlet Cooper pairing is
Oðz;�Þ � ei�cþðzÞc�ðzÞ, which implies a fast power-

law decay /jzj�2=K. The angular ei� dependence comes
from the spin structure in Eq. (7) and causes an additional
strong suppression of the proximity effect. For normal-
state metallic electrodes, in a two-terminal geometry, the
conductance is G ¼ e2=h (independent of K) when the
contacts are ideal. However, nonideal contacts cause a
typical temperature-dependent decrease of GðTÞ at low
temperatures due to the well-known power-law suppres-
sion of the tunneling density of states [20]. Moreover, in
contrast to a spin-polarized LL (which also has G ¼ e2=h

for ideal contacts), spin plays an essential role here. This
could be easily seen in the presence of magnetic impurities.
In particular, the Kondo effect can take place, where theo-
retical predictions for GðTÞ exist [24] and directly apply.
To conclude, we are confident that the helical LL will soon
allow for its clear experimental identification in topolo-
gical insulator nanowires.
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