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We identify the pattern of microscopic dynamical relaxation for a two-dimensional glass-forming

liquid. On short time scales, bursts of irreversible particle motion, called cage jumps, aggregate into

clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches. This

propagation of mobility takes place along the soft regions of the systems, which have been identified by

computing isoconfigurational Debye-Waller maps. Our results characterize the way in which dynamical

heterogeneity evolves in moderately supercooled liquids and reveal that it is astonishingly similar to the

one found for dense glassy granular media.
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Identifying the mechanisms responsible for the slowing
down of the dynamics of supercooled liquids is still an
open problem despite decades of research. While tradi-
tional descriptions of glassy systems have mainly focused
on energy landscape concepts [1] and spatially averaged
quantities, recent work has centered on the real-space
properties reflected in the heterogeneous dynamics shown
by nearly all glass-forming materials. Concomitantly, in-
vestigations of the behavior of dense driven granular media
have uncovered tantalizing similarities with the dynamics
of supercooled liquids [2–5] and provided new inspirations
for research on the glass transition. One notable finding
from the granular studies is that dynamic heterogeneities
are organized into a hierarchy of structures, each of them
characterized by its length and time scales [6,7]. Cage
escapes by individual particles occur in clusters which, in
turn, are organized into larger collections that were called
‘‘avalanches,’’ referring to large collective events com-
posed sequentially by smaller ones.

An important question is whether this hierarchy of dy-
namic heterogeneities is present in thermally equilibrated
supercooled liquids or, instead, it is a peculiarity of athe-
rmal dissipative systems. Evidence of organized motion in
liquids has already been reported [8–12]: on relatively fast
time scales, the complex sequence of particle motions
results in stringlike clusters of displacements, see, e.g.,
[10]; on time scales on which relaxation takes place,
particle motion is organized in compact clusters [11].
While these studies are encouraging, neither the extended
spatial hierarchy of particle escape within clusters and
avalanches nor how the dynamical correlations form start-
ing from microscopic time scales out to the structural
relaxation time have been explored. In this Letter we
identify these mechanisms and demonstrate that the dy-
namic heterogeneities of a supercooled liquid are, in fact,

organized in an hierarchy essentially identical to that found
in granular systems.
Understanding how the spatial distribution of kinetics

arises from the structure of the underlying particle con-
figurations represents a central challenge for any complete
discussion of a glass transition. We therefore also inves-
tigate how this hierarchy of length and time scales is ex-
pressed in the configurational structure. Using the
isoconfigurational ensemble and the local Debye-Waller
(DW) factor, correlations between structure and dynamic
heterogeneities have been established [13,14]. Here we
show mechanistically and in detail how clusters and ava-
lanches develop on soft regions of the structure and, in-
versely, how these relaxation events change the spatial
distribution of the soft regions.
We shall address these questions by performing molecu-

lar dynamics simulations on a new two-dimensional model
of glass-forming liquid and applying the cluster analysis
developed in [6]. We focus on a 2D nonadditive binary
mixture of N ¼ 5760 particles enclosed in a square box
with periodic boundary conditions, interacting via purely
repulsive potentials of the form uabðrÞ ¼ "ð�ab=rÞ12. The
mole fraction of the smaller particles is set to x1 ¼ 0:3167.
All units are reduced so that �11 ¼ " ¼ m ¼ 1:0, m being
the mass of both types of particle. The nonadditivity po-
tential, namely, �12 ¼ 1:1�11 and �22 ¼ 1:4�11, hinders
the formation of crystalline microdomains; see [15] for
more details. Molecular dynamics simulations were carried
out at constant NVT (T ¼ 0:4) using the Nose-Poincaré
Hamiltonian [16] after equilibration at constant NPT as
described in [14]. All time units are scaled in such a way
that the structural relaxation time ��, defined as the time
required for the self-intermediate scattering function to
decay to 1=2, equals 103. The typical collision time is
0.12 in these units.
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To compare the dynamic heterogeneities of the simu-
lated liquid and granular system we quantify the local
relaxation of a particle p by

Qp;tða; �Þ ¼ exp

�
�k� ~rpðt; tþ �Þk2

2a2

�
; (1)

where �~rpðt; tþ �Þ is the displacement of the particle p

between t and tþ � and a is the length scale over which
the motion is probed. A global measure of the relaxa-
tion is then provided by the correlation function,
Qtða; �Þ ¼ 1

N

P
pQp;tða; �Þ, and its fluctuations �4ða; �Þ ¼

NVar½Qtða; �Þ�. We focus on the values a� ¼ 0:29 and
�� ¼ 1078 leading to maximal dynamic heterogeneity,
i.e., highest value of �4ða; �Þ (see [17] for details). Note
that �� is very close to the relaxation time �� ¼ 1000.

To define cage jumps, we follow the same procedure as
in [6]. Briefly, the trajectory of each particle is divided in
two at a time tc, tc being chosen such that the centers of
mass of the subtrajectories on either side of tc are best
separated. tc is designated a cage escape, and the process is
repeated iteratively for each of the subtrajectories until the
maximal separation drops below a threshold distance stem-
ming from the dynamics itself. This allows one to separate
the dynamics into periods of inefficient vibrational motion
separated by relaxation events also called cage jumps (see
inset of the top-left panel of Fig. 1). Note that a particle
undergoing a cage jump does not necessarily change neigh-
bors, since the typical jump distance is well below the
particle size. The relative percentage of particles that
have not jumped matches perfectly the temporal evolution
of the dynamical relaxation (Fig. 1, top left) and the
location of the cage jumps coincides with the areas of
maximal decorrelation (Fig. 1, top right).

Figure 1 (top right) already suggests some level of
spatiotemporal organization of the cage jumps. This can
be further quantified following the analysis performed for
the two-dimensional granular media [6]. The outcome is
remarkably similar (Fig. 1, bottom right): First, cage jumps
aggregate into clusters, which are formed by cage jumps
adjacent in space (as measured by the neighboring parti-
cles) and time (separated by less than �th ¼ 28, which is
twice the precision of the cage detection algorithm). The
size of these clusters is broadly distributed with an average
value of 7.6 cage jumps per cluster. Second, clusters ag-
gregate into avalanches. The probability distribution func-
tion (PDF) of the lag times �1 separating each cluster from
the nearest adjacent one, normalized by its average value
h�1i, is compared to the equivalent distributions for ran-
domly distributed clusters in space and time (Fig. 1, bottom
left). There is a clear excess of both small and large lags:
the PDF is very well fitted by the superposition of two
Poissonian processes with two different time scales �S ¼
240 and �L ¼ 1746. The short time scale corresponds to
the existence of a correlation among adjacent clusters. The
large one is related to the average time spent in a cage.
Table I compares the actual values of these parameters to

those of the granular system investigated previously. We
also report the value of the dynamical correlation length
�4, obtained from the spatial range of the dynamical cor-
relatorG4 computed at ��; see, e.g., [18]. The dynamics are
strikingly similar. One difference we find is that the aver-
age distance between avalanches is somewhat smaller in
the liquid case than in the granular one: �10 as compared
to�27. More evidence, as well as details on the procedure
for identifying cage jumps and analyzing them, are re-
ported in the supplementary material [19].

FIG. 1 (color online). Cage jump spatiotemporal organization.
Top left: Comparison between the relative averaged relaxation
Qtða�; ��Þ=hQtit [gray (cyan)] and the relative percentage
Ptð��Þ=hPtit of particles that have not jumped between t0 and
t0 þ �� (black). Inset: Trajectory of a single particle over 14��.
Color changes when the particle jumps. Top right: (inner
top) Map of Qt0 ð��Þ; (inner bottom) particles having jumped

during the same lag ��; jumping time is color-coded. Bottom
left: Cumulative probability distribution function of the lag
between adjacent clusters �1 (thick green curve), compared to
the corresponding curve for a random distribution of clusters
(black). Inset: PDF of �1 (circles). The exponential distribution
with same mean is shown for comparison (solid line), as well as
exponentials of typical time scale �S and �L (dotted lines).
Bottom right: Spatiotemporal view of the cage jumps in a
specific region of space, projected on the x axis. The cluster
size is color-coded. Note the aggregation of clusters in ava-
lanches. The typical time scales of the dynamics are shown.

TABLE I. Comparison of length and time scales normalized so
that �� ¼ 1000. See definitions in the text.

a� �4 �� �� �S �L

Supercooled liquid 0.29 2.9 1000 1078 240 1746

Dense granular media 0.12 3.1 1000 915 155 1384
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Altogether, this first part of our study clearly demon-
strates that the nature of dynamic heterogeneity in super-
cooled and granular systems is largely the same, a
nontrivial result given the difference between an equili-
brated thermal liquid and a nonequilibrium steady state of
vibrated grains. Recent results [7] obtained by changing
the density of the granular sample suggest that our model
of a supercooled liquid would compare with a granular
system characterized by a slightly smaller density than the
one studied here. Obviously the next step is to perform a
careful study of the temperature dependence, which will
require significant further supercooling.

The existence of avalanches is consistent with a scenario
in which the first cluster triggers the appearance of succes-
sive clusters nearby shortly after. This is reminiscent of the
facilitation picture inspired from facilitated kinetic Ising
models, for which mobility diffuses as a locally conserved
quantity [20,21]. However, in a real system, there should
always be a probability to create or annihilate a facilitated
chain of motion and facilitation is not fully conserved. This
is precisely what we see when avalanches start or end. As
compared to other studies of supercooled liquids, we be-
lieve that the democratic clusters [10] correspond with the
avalanches.

We shall now address how (if at all) this organization of
dynamics is reflected in the structure of the relevant con-
figuration. Here we will identify the location of ‘‘soft’’
regions by using the isoconfigurational DW factor
[14,22]. Starting from the system configuration at time t,
one computes the local DW factor for particle i: ðDWÞi ¼
h½~riðtÞ � h ~rii�t�2i�t;C, where the average is over the isocon-
figuration ensemble as well as over a short time interval �t
which in this work is taken to be 25. Starting from the same
equilibrated configuration, we have run 6 isotrajectories
and have obtained the cage jumps for all of them.

All of the cage jumps occurring in the interval of time
½t; tþ �S� fall on top of high DW areas; see Fig. 2, top.
However, when and where the clusters exactly appear is a
stochastic event. Note that �S � 25, so that the correlation
between the DW map at time t (a nearly instantaneous
structural quantity) and the dynamics taking place at longer
times are nontrivial. The correlation between DWs and
cage jumps can be made more quantitative. We compute
the DW at time t averaged only over particles that jump
between t and tþ � (DWJ) as a function of the lag time �.
This quantity, normalized with respect to hDWðtÞit for all
particles, is shown in Fig. 2 (bottom right). At short times
the average ðDWÞJ for the jumping particles is substan-
tially higher than the DW averaged over all particles. This
correlation disappears for larger times comparable to times
over which the DWmaps decorrelate, which is of the order
of ��=3.

If we consider now the sequence of multiple clusters, as
shown in the two top panels of Fig. 2, we find strong
evidence that a significant part of the avalanche structure,
not just the initial cluster in an avalanche, lies on top of the

real-space geometric structure encoded in the soft regions.
Remarkably, merging all cage jumps that occur in the
interval of time �S in the 6 isoconfigurational trajectories
covers nearly all the high DW areas, as shown in Fig. 2
(bottom left). Our conclusion is that the spatial distribution
of soft regions encoded in the initial configuration provides
a better predictor of the avalanche than for its constitutive
clusters. This result is consistent with the previous con-
clusion of Berthier and Jack [23], who found that structural
properties are better predictors of dynamics on large as
opposed to short length scales.
We finally consider an issue never addressed before,

namely, how the dynamics causes the soft regions of the
structure to evolve. We find that decorrelation is a dis-
tinctly nonlocal process. More precisely, a cage jump at
time t correlates with changes of the DWs that happen
shortly after and extend quite far away. This is visually
apparent in Fig. 3 (left) and demonstrated quantitatively by
considering jDWðtÞ � DWðtþ �Þj averaged over all par-
ticles, that are in a disk of radius r from a cage jump taking
place at time t and subtract from that quantity its r ¼ 1
value. Figure 3 (right) shows this quantity, called�JðrÞ, for
� ¼ 17. �JðrÞ is rather long ranged, in particular, much
more than the cage jump correlation function �JðrÞ; see
Fig. 3 (right) and its caption for a precise definition of

FIG. 2 (color online). Top: Cage jumps occurring between t
and tþ �S for two different isoconfigurational trajectories, on
top of a DW factor map computed at time t. Bottom left: Cage
jumps occurring in 6 isoconfigurational trajectories between t
and tþ �S tile the high DW regions. Color bar indicates the DW
values in levels of gray. Bottom right: Average hðDWÞJi over the
particles having jumped between t and tþ �, divided by the
average hDWi over all particles, as a function of the lag time �.
Inset: PDF of ðDWÞJ for the particles jumping in ½t; tþ �� for
several values of �. The black curve is the PDF for all particles.
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�JðrÞ. What is mediating the nonlocal interaction between
cage jumps and DWs is an intriguing question. One possi-
bility is that a slowly varying spatial field, like the thermal
strain discussed in [12], provides long-ranged dynamical
interactions.

In conclusion, we have established that the organization
of cage jumps into clusters and avalanches, observed origi-
nally in the driven granular system in [6,7], also character-
izes the dynamic heterogeneities of a simulated
supercooled liquid, at least away from deep supercooling.
This demonstration of the existence of avalanches in super-
cooled liquids suggests that there is a hierarchy of lengths
related to the cooperative dynamics. The irrelevance of the
very different types of particle dynamics in the two sys-
tems possibly is a consequence of the dominant role played
by structure in the dynamics of these dense disordered
systems. The spatial extent of the avalanches is strongly
correlated with the extent of the spatial regions of large
local DW factors. This result raises the possibility that the
hierarchy of kinetic length, mentioned above, may have a
corresponding hierarchy in the inherent structures of glass-
forming liquids. The importance of the preexisting soft
modes in determining the structure of dynamic heteroge-
neities and the nonlocal influence on the evolution of the
topography of hard and soft areas leaves us with a quite
different view from the one based on the propagation of a
conserved mobility field.

Studying the evolution of dynamical properties with
decreasing temperature following the same analysis would
allow for direct tests of prominent theories of the glass
transition. In the picture based on kinetically constrained
models of glasses [21], facilitation should become more
relevant and conserved upon lowering the temperature. In
the random first order transition theory [24], the dynamics
should be correlated with soft regions for moderately
supercooled liquids, but, closer to the glass transition, the
relaxation should be dominated by other processes. Three

of us [7] have performed such an analysis for granular
media and found that facilitation becomes less conserved
as the density is increased. A similar analysis for our model
of supercooled liquids is in progress.
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FIG. 3 (color online). Left: Cage jumps occurring in � ¼ 17
on top of a map of the relative difference ðDWðtþ �Þ �
DWðtÞÞ=hDWi. Right: Normalized �JðrÞ ¼ hj�ðDWÞijiJr �
hj�ðDWÞijiJ1 (blue circles) where hj�ðDWÞijiJr is the absolute
difference of DW over � ¼ 17 averaged over the particles in the
disk of radius r around a given cage jump. The analogous
quantity for the density of jumps �JðrÞ ¼ h�iiJr � h�iiJ1 (red
squares) where �i is 1 if particle i jumps between t and tþ �
and 0 otherwise. Error bars: standard deviation.
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