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A novel supersolid phase is predicted for an ensemble of Rydberg atoms in the dipole-blockade regime,

interacting via a repulsive dipolar potential softened at short distances. Using exact numerical techniques,

we study the low-temperature phase diagram of this system, and observe an intriguing phase consisting of

a crystal of mesoscopic superfluid droplets. At low temperature, phase coherence throughout the whole

system, and the ensuing bulk superfluidity, are established through tunnelling of identical particles

between neighboring droplets.
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The search for novel phases of matter drives much of the
current research in condensed matter physics. Of particular
interest are phases simultaneously displaying different
types of order. A chief example, of great current interest,
is the so-called supersolid, namely, a phase featuring crys-
talline order, and also capable of sustaining dissipationless
flow. Attempts to observe experimentally a supersolid
phase of matter, primarily in a crystal of solid helium,
have spanned four decades since early theoretical predic-
tions [1]. The most credible claim of such an observation to
date [2,3], has been subjected to in-depth scrutiny over the
past few years, and it seems fair to state that agreement is
lacking at the present time, as to whether experimental
findings indeed signal a supersolid phenomenon [4].

A new, fascinating avenue to the observation of super-
solid and other phases of matter not yet observed (or even
thought of), is now opened by advances in cold atom
physics, providing not only remarkably clean and con-
trolled experimental systems, but also allowing one to
‘‘fashion’’ artificial interparticle potentials, not arising in
any known condensed matter system. This allows one to
address a key theoretical question, namely, which two-
body interaction potential(s), if any, can lead to the occur-
rence of a supersolid phase in free space (i.e., not on a
lattice).

In a recent article [5], Henkel et al. have proposed, based
on a mean-field treatment, that a Bose condensate of
particles interacting through an effective potential which
flattens off at short distance, might support a density
modulation. In this Letter, we show by first principle
numerical simulations that interaction potentials which
combine a long-distance repulsion with a short-distance
cutoff, lead in fact to the appearance of a novel self-
assembled crystalline phase of mesoscopic superfluid
droplets in a system of bosons. Furthermore, such a crystal
can turn supersolid in the T ! 0 limit, as tunneling of
particles across neighboring droplets takes place, and su-
perfluid phase coherence is established across the whole
system, as individual separate Bose condensates (droplets)

organize into a single, global condensate. Specifically, we
consider the following two-body potential:

vðrÞ ¼
�
D=a3 if r � a
D=r3 if r > a

; (1)

D being the characteristic strength of the interaction. This
kind of interaction potential can be realized with cold
dipole-blockaded Rydberg atoms [6–10]. The parameters
D and a above can be controlled with external fields [5,11]
(we come back to this point below).
Our system of interest comprises N identical bosons of

mass m, confined to two dimensions [12]. The many-body
Hamiltonian is the following (in dimensionless form):

H ¼ � 1

2

XN
i¼1

r2
i þ

X
i>j

vðrijÞ (2)

where rij ¼ jri � rjj is the distance between particles i

and j, and v is given by Eq. (1). All lengths are expressed
in terms of the characteristic length r0 ¼ mD=@2, and we
introduce a dimensionless cutoff Rc ¼ a=r0 for the poten-
tial (1). The system is enclosed in a square cell of area A,
with periodic boundary conditions. The particle density is
n ¼ N=A, but we shall express our results in terms of the

(dimensionless) interparticle distance rs ¼ 1=
ffiffiffiffiffiffiffiffi
nr20

q
. The

energy scale is �0 ¼ D=r30 ¼ @
2=mr20.

The low-temperature phase diagram of such a system
has been explored by means of first principles numerical
simulations, based on the continuous-space worm algo-
rithm [13,14]. Numerical results shown here pertain to
simulations with a number of particles N varying between
50 and 400, in order to carry out extrapolation of the results
to the thermodynamic limit. Our ground state estimates are
obtained as extrapolations of results at finite temperature.
Details of the simulations are standard, as the use of the
potential (1) entails no particular technical difficulty.
In the limit Rc � rs, the truncation of the dipolar po-

tential at short distances does not play an important role,
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and the low-temperature phase diagram of Eq. (2) is that of
purely dipolar bosons in two dimensions, investigated
previously by several authors [15,16]. It is known that for
rs & rCs ¼ 0:06 the ground state of the system is a trian-
gular crystal, whereas for rs * rLs ¼ 0:08 it is a uniform
superfluid (in the intermediate density range a more com-
plex scenario is predicted [17]). As we show below, a very
different physics sets in when Rc * rs, in the density
ranges which correspond to either the crystalline or super-
fluid phase in the purely dipolar system.

Figure 1 shows typical configurations (i.e., particle
world lines) produced by Monte Carlo simulations of a
system of bosons interacting via the potential (1), at a
nominal density corresponding to rs ¼ 0:14, at different
temperatures spanning 3 orders of magnitude. The value of
the cutoff Rc in this case is 0.3. At the highest temperature,
a simple classical gas phase is observed, as shown by the
pair correlation function gðrÞ, shown in Fig. 2(a), which is
just a constant [note that gðrÞ does not vanish at the origin,
owing to the flattening off of the potential at short dis-
tance]. As T is decreased, an intriguing effect takes
place, namely, particles bunch into mesoscopic droplets,
in turn forming a regular (triangular) crystal. This is shown
qualitatively in the snapshots in Fig. 1, but also con-
firmed quantitatively by the structure of the gðrÞ as well
[Fig. 2(a)], which displays pronounced, broad maxima, as
well as well-defined minima, where the function ap-
proaches zero. We henceforth refer to this phase as the
droplet-crystal phase.

The formation of such droplets is a purely classical
effect, that depends on the flattening off of the repulsive

interparticle potential below the cutoff distance. In fact, a
simple estimate of the number Nd of particles per droplet,
can be obtained by considering a triangular lattice of
pointlike dipoles, each one of strength / Nd (as it com-
prises Nd particles), and by minimizing with respect to Nd

the potential energy per particle, for a fixed density. The
result is

Nd ¼ �

�
Rc

rs

�
2

(3)

where � � 2:79. Equation (3) furnishes a fairly accurate
estimate of Nd for the (wide) range of values of the
parameters rs and Rc explored here. For instance, using
the parameters of Fig. 1, we find from Eq. (3) Nd � 13,
which agrees quite well with our simulation result. It is
worth noting that a similar sort of pattern formation, due to
competing interactions, has been previously established for
classical colloidal systems [18,19].
In the T ! 0 limit, long exchanges of identical particles

can take place, as a result of particles tunneling from one
droplet to an adjacent one. Long exchanges of particles can

FIG. 1. Snapshots of a system of bosons interacting via poten-
tial (1), at the four different temperatures 200 (a), 20 (b), 1.0 (c)
and 0.1 (d), expressed in units of �0. Points shown are taken
along individual particle world lines. The nominal value of rs in
this case is 0.14, whereas the cutoff of the potential (1) is Rc ¼
0:3.
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FIG. 2 (color online). Results shown are for rs ¼ 0:14 and
Rc ¼ 0:3. Temperature is in units of �0. (a) Pair correlation
function gðrÞ at a temperature T ¼ 200 (triangles), 20 (squares),
1.0 (diamonds) and 0.1 (circles). The simulated system com-
prises N ¼ 200 particles. (b) Superfluid density vs T for systems
with N ¼ 100 (square), and 200 (diamond) particles.
(c) Frequency of occurrence of permutation cycles of length L
at the same four temperatures reported in panel (a). Longer
permutation cycles occur at lower temperature.
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result in a finite superfluid response throughout the whole
system, and indeed for Rc * rLs we observe such a bulk
superfluid signal, in a range of values of rs in the vicinity of
Rc=2. A typical result is shown in Fig. 2(b)[20]. Because
superfluidity arises in concomitance with the droplet-
crystal structure, the denomination supersolid seems
appropriate.

In order to establish that droplets are individually super-
fluid, one may consider the statistics of permutation cycles.
Figure 2(c) shows the frequency of occurrence of exchange
cycles involving a varying number L of particles (1 � L �
N), at three different temperatures, at the physical condi-
tions of Fig. 1. As one can see, as the temperature is
lowered exchange cycles involving growing numbers of
particles occur. At low temperature they involve almost all
the particles in the system; however, even at a higher
temperature [e.g., T ¼ 20 in Fig. 2(c)] one observes ex-
changes comprising a number of particles up to �Nd, i.e.,
particles inside an individual droplet. This is evidence that
droplets are individually Bose condensed and superfluid,
even though the system as a whole does not display super-
fluidity. That droplets should be superfluid at low T is not
surprising, given that particles in a droplet are essentially
noninteracting, due to the flatness of the potential at short
distance. However, that droplets are themselves superfluid
does not imply that a bulk supersolid phase will always
occur in the T ! 0 limit, as discussed above.

At T ¼ 0, the supersolid phase is sandwiched between
an insulating droplet crystal at high density (i.e., lower rs)
and a homogeneous superfluid phase at lower density. For
Rc & rCs , only two insulating phases are observed, namely,
the insulating droplet crystal at high density and the crystal
of single particles, already detected in Refs. [15,16], as
well as a superfluid phase at lower density. All of this is
summarized in the schematic phase diagram shown in
Fig. 3. It is important to stress that supersolid behavior in
this system originates from tunnelling of particles between
droplets which are themselves individually superfluid, so
that the individual superfluid droplets connect to form a
bulk superfluid. This is reminiscent of the phase-locking
mechanism in a (self-assembled) array of Josephson
junctions.

The results discussed so far pertain to numerical simu-
lation of the system described by Eq. (2) in its bulk phase.
However, in any experiment aimed at probing the physics
of such a system, the assembly of particles must neces-
sarily be finite (a few thousand particles is a typical number
for current experiments with cold dipolar atoms), confined
by an external potential. In order to enable a direct com-
parison with possible future experiments, we have per-
formed simulations of the same system spatially confined
in plane by a harmonic trap; i.e., the term �

P
ir

2
i is added to

Eq. (2), � � m!2=2 being the strength of the trap.
Figure 4 shows typical many-particle configurations of a

trapped system comprising N ¼ 400 particles, at two dif-
ferent temperatures. Also shown are the associated mo-
mentum distributions nðkÞ, which are obtained by Fourier
transforming of the spherically and translationally aver-
aged one-body density matrix, computed by Monte Carlo
calculations.
Here too, droplets with a well-defined average number

of particles form, and organize themselves on a triangular
lattice. Correspondingly, the momentum distribution,
which is directly observable experimentally by time-of-
flight measurements [21], develops a sharp central peak,
with additional structure on its sides. The secondary peaks
correspond to oscillations in the one-body density matrix,
in turn reflecting particle tunnelling to adjacent droplets.
They are therefore connected to the appearance of the
supersolid phase, as explained above.

IDC SDC SF
Rc > rs

L

IDC C SF
Rc < rs

C

rs

FIG. 3 (color online). Schematic ground state phase diagram
of Eq. (2) as a function of rs. The superfluid droplet crystal
(SDC) is sandwiched between an insulating droplet crystal (IDC)
and a superfluid (SF). For Rc & rCs , an IDC phase , a single-
particle crystal (C) phase and a superfluid phase are observed.
The widths of the SDC and C regions depend on the value of Rc.
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FIG. 4. Left panels: Monte Carlo snapshots of a system of N ¼
400 particles, interacting via the potential (1), confined in a
harmonic trap of strength � ¼ 500�0, at the two temperatures
T ¼ 100 �0 (a) and T ¼ 0:5 �0 (b). Right panels: corresponding
momentum distributions, all normalized to unity for comparison
purposes. The value of Rc in this case is 0.3. The development of
secondary peaks at low temperature signals the occurrence of a
supersolid phase.
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Summarizing, accurate numerical simulations of a sys-
tem of dipolar particles interacting via a potential softened
at short distance, reveal the existence of a low-temperature
crystalline phase of superfluid droplets. This phase turns
superfluid (supersolid) at T ! 0 through a mechanism of
tunnelling of particles between adjacent droplets. At higher
density this tunnelling is suppressed and an insulating
droplet crystal occurs, a phase which has not previously
been predicted. The interaction that underlies such intrigu-
ing, until now unobserved physical behavior, can be real-
ized with dipolar atoms in the dipole-blockade regime.

A comment is in order, concerning the dependence of
the results on the particular form of potential utilized here,
namely, Eq. (1) with its abrupt, sharp cutoff at r ¼ a. First
off, the superfluid droplet-crystal phase does not crucially
depend on the dipolar form of the interaction at long
distances. Indeed, it is also observed in our simulations
for van derWaals-like potentials [i.e., vðrÞ � r�6]. Second,
we have obtained qualitatively similar results with differ-
ent model potentials, featuring a more realistic ‘‘flat’’
region at short distances, as well as a smoother merge of
long- and short-range behaviors. For example, we consid-
ered the potential VðrÞ ¼ D=ða3 þ r3Þ, which is naturally
realized in a cold gas of alkali atoms by weakly dressing
the ground state jgi of each atom with an excited Rydberg
state jri with a large dipole moment d, in the kDebye
range [11].

While several dressing schemes are possible [5,22], here
we consider jri as the lowest-energy state of a Rydberg
manifold with principal quantum number n for an atom in
the presence of a homogeneous electric field F < FIT in the
linear Stark regime, with FIT / 1=n4 the Inglis-Teller
limit. For a laser with (effective) Rabi frequency � and
red detuning j�j � �, the dressed ground state reads
j~gi � jgi � ð�=2�Þjri, and thus D / ð�=�Þ4d2, with d /
n2, while the cutoff a ’ ðd2=@j�j�0Þ1=3 arises because of
the Rydberg-blockade mechanism [6]. Spontaneous emis-
sion rates �r from jri are strongly reduced to values of at
most � ’ ð�=�Þ2�r. Observability of the phases above
benefits from large values of �0, and, in particular, of the
ratio �0=ðh�Þ ¼ ½�2=ð4�j�j�rÞ�R3

C, favoring compara-

tively small values of r0 [23]. For example, for 87Rb atoms
in an electric field F ¼ 25 kV=m, with n ¼ 20, �=2� ¼
50 MHz and j�j=2� ¼ 3 GHz, we obtain d ¼
1450 Debye, a ’ 400 nm, r0 ’ 210 nm, �0=ðh�Þ ’ 90,
and �0=kB ’ 120 nK. Collective many-body effects in the
Rydberg-blockade regime [22] not described by Eq. (2)

should be negligible provided ðRc=rsÞ2 � ð2�=�Þ2,
which is readily satisfied for parameters as in Fig. 1.
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