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We study the correlator of two vector currents in quenched SUð2Þ lattice gauge theory with a chirally

invariant lattice Dirac operator with a constant external magnetic field. It is found that in the confinement

phase the correlator of the components of the current parallel to the magnetic field decays much slower

than in the absence of a magnetic field, while for other components the correlation length slightly

decreases. We apply the maximal entropy method to extract the corresponding spectral function. In the

limit of zero frequency this spectral function yields the electric conductivity of quenched theory. We find

that in the confinement phase the external magnetic field induces nonzero electric conductivity along the

direction of the field, transforming the system from an insulator into an anisotropic conductor. In the

deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field.
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Recently, heavy-ion experiments at the BNL Relativistic
Heavy Ion Collider (RHIC) have found evidence [1] for the
so-called chiral magnetic effect [2] in quark-gluon plasma.
The essence of the effect is the generation of an electric
current along the direction of the external magnetic field in
the background of topologically nontrivial gauge field
configurations. Experimentally, the effect manifests itself
as the dynamical enhancement of fluctuations in the num-
bers of charged hadrons emitted above and below the
reaction plane in off-central heavy-ion collisions. Re-
cently this effect has been studied also in lattice gauge
theory, and the evidence for charge separation in a mag-
netic field has been found [3,4]. In Ref. [3] it was found
that the fluctuations of the electric current along the mag-
netic field are strongly enhanced as compared to the fluc-
tuations of current in the perpendicular directions. This
conclusion was also confirmed by an analytical calculation
in the instanton gas model [5]. The result of Ref. [3] on the
difference of longitudinal and transverse electric current
susceptibilities was reproduced later by an analytical cal-
culation [6]; the frequency dependence of the conductivity
has also been evaluated—for the weak coupling result, see
Ref. [7].

A natural question to ask is whether this enhancement of
current fluctuations corresponds to a real flow of charge, or
is just caused by short-lived quantum fluctuations. This
question can be answered by studying the current-current
correlation functions. The currents which correspond to a
real transport of charged particles should have long-range

correlations in time, while quantum fluctuations are typi-
cally characterized by a finite correlation time [8]. Recal-
ling Green-Kubo relations, one can see that this property is
intimately related to the electric conductivity—namely, the
real transport of charged particles can occur only in con-
ducting media. In this Letter we study the tensor of electric
conductivity of the vacuum of quenched SUð2Þ lattice
gauge theory in external magnetic field. We find that the
magnetic field induces nonzero electric conductivity along
its direction, transforming the confining vacuum from an
insulator into an anisotropic conductor.
Electric conductivity can be extracted from the correla-

tor of two vector currents jiðxÞ ¼ �qðxÞ�iqðxÞ:

Gijð�Þ ¼
Z

d3 ~xhjið~0; 0Þjjð ~x; �Þi: (1)

Following Ref. [9], let us define the spectral function
�ðwÞ which corresponds to the correlator (1)

Gijð�Þ ¼
Z þ1

0

dw

2�
Kðw; �Þ�ijðwÞ; (2)

Kðw; �Þ ¼ w

2T

cosh½wð�� 1
2TÞ�

sinhðw2TÞ
; (3)

where T is the temperature. The Kubo formula for the
electric conductivity then reads [8,9]:

�ij ¼ lim
!!0

�ijð!Þ
4T

: (4)
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In the limit of the weak time-independent electric field Ek,
one has hjii ¼ �ikEk. Thus electric conductivity is related
to the behavior of the spectral function at small frequen-
cies. If there is a gap in the spectrum so that �ijðwÞ ¼ 0 for

w< wc, electric conductivity is zero and Gijð�Þ�
cosh½wcð�� 1

2TÞ�. On the other hand, if �ðwÞ is not zero

near w ¼ 0, one can expect slow nonexponential decay
of Gijð�Þ.

To measure the correlator (1), we perform lattice
Monte Carlo simulations of quenched SUð2Þ lattice gauge
theory. Since quark chirality is very important for magnetic
effects in non-Abelian gauge theories [2], we use the over-
lap lattice Dirac operator D with exact chiral symmetry
[10] to measure the vector currents. We consider the two-
current correlator in the meson channel, which is repre-
sented in terms of Dirac propagators in fixed Abelian and
non-Abelian gauge fields and is then averaged over an
equilibrium ensemble of non-Abelian gauge fields A�:

h �qðxÞ�iqðxÞ �qðyÞ�jqðyÞi
¼

Z
DA�e

�SYM½A��Tr
�

1

Dþm
�i

1

Dþm
�j

�
; (5)

where SYM½A�� is the lattice action for gluons A�.

A uniform magnetic field is added to the Dirac operator
by substituting su (2)-valued vector potential A� with

u (2)-valued one A�ij ! A�ij þ 1=2F��x��ij. In order to

account for periodic boundary conditions we introduce an
additional twist for fermions [3,11]. The quark mass is
fixed in lattice units at a small value am ¼ 0:01. Prev-
ious studies of mesonic correlation functions with an
overlap Dirac operator indicate that the vector current
correlator depends very weakly on quark mass [12].

Strictly speaking, the correlator (5) corresponds to the
correlator of charged currents, for example �u��d. The

correlator of neutral currents considered in our Letter,
j� ¼ �d��d, should also contain the disconnected part.

This part is quite intricate for an accurate numerical treat-
ment. We have roughly estimated its contribution by in-
verting the Dirac operator on a subspace spanned on some
small number M� 30 of the lowest Dirac eigenmodes, as
in Ref. [13]. It turned out that this part of the full neutral
current correlator behaves similarly to the connected one
(5). We do not reproduce these estimates here due to
uncontrollable systematic errors [13].

We use the tadpole-improved Wilson-Symanzik action
(see, e.g., Eq. (1) in Ref. [14]). For inversion, we use a
Gaussian source with radius r ¼ 1:0 in lattice units in both
spatial and time directions and a point sink (that is, quark
position is smeared over a Gaussian profile). We have
found that such smearing significantly improves the con-
vergence of the maximal entropy method [9,15,16] at small
lattice sizes, while the value of the conductivity is practi-
cally unaffected. Our lattice parameters are summarized in
Table I. A uniform magnetic field is introduced into the
Dirac operator as described in Ref. [3]. In order to obtain

the Dirac propagator, we implement the shifted unitary
minimal residue method described in Ref. [17].
It is clear that since the magnetic field is parallel to the z

axis, the principal axes of the tensor �ijð�Þ will be the x, y,
and z axes and it is sufficient to consider only the diagonal
components �ii (no summation over i ¼ x, y, z).
We plot some correlators at different temperatures and

magnetic fields on Fig. 1. The data are for the 144 lattice
with spacing a ¼ 0:102 fm (left) and for the 163 � 6 lat-
tice with spacing a ¼ 0:095 fm (right). For the latter lattice
the temperature is T ¼ 350 MeV ¼ 1:12Tc and the theory
is in the deconfinement phase. In the quenched theory the
critical temperature of the deconfinement transition is not
affected by the magnetic field. The temperature T ¼ 1:12
corresponds to the chirally restored phase.
One can see that without the magnetic field the correla-

tors decay quickly in the confinement phase. In the decon-
finement phase the decay is significantly slower for all
Giið�Þ. When we switch on a magnetic field with the
strength qB ¼ ð0:63 GeVÞ2, in the confinement phase the
correlator Gzzð�Þ decays much slower and is significantly
larger than zero for all �, much like in the deconfinement
phase. In contrast, the correlators for the perpendicular
components of the current Gxxð�Þ and Gyyð�Þ decay some-

what quicker than in the zero field case. In the deconfine-
ment phase all the correlators are practically unaffected by
the magnetic field.
We now apply the maximal entropy method [9,15,16] to

extract the spectral functions (2) from the correlators (1).
Our analysis is similar to that of Refs. [9,16]. We used the
model with the default guess �mðwÞ ¼ �m0ðbþ awÞ [9].
Some spectral functions at different temperatures and mag-
netic fields are plotted on Fig. 2.
In the confinement phase and in the absence of magnetic

field, the spectral function has a distinct peak near w �
1 GeV, which corresponds to the mass of the � meson in
quenched SUð2Þ lattice gauge theory [13,16]. The width of
this peak in quenched approximation is a lattice artefact
[16], and should decrease for finer and larger lattices. The
spectral function in the limit of zero frequency, �ijð0Þ, is
equal to zero within the error range. This indicates that in
the absence of an external magnetic field the vacuum of
quenched QCD is an insulator, in agreement with the
results of Refs. [15,16]. When the external magnetic field
is applied, the peak grows and the spectral function be-
comes nonzero in the limit of zero frequency. For other

TABLE I. Lattice parameters used in our simulations. The
critical temperature of the deconfinement phase transition in
quenched SUð2Þ gauge theory is Tc ¼ 313:ð3Þ MeV [18].

	 a, fm N3
s � Nt T=Tc #conf

3.2810 0.102 143 � 14 0.43 30

3.2810 0.102 163 � 16 0.38 30

3.3555 0.089 163 � 16 0.43 30

3.3250 0.095 163 � 6 1.12 30
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components of �ijðwÞ nothing changes qualitatively, but

the peak which corresponds to the �meson becomes some-
what smaller and shifts slightly to larger w. The conduc-
tivity stays equal to zero within the error range. Thus when
the external magnetic field is applied to the quenched
vacuum of the SUð2Þ lattice gauge theory, the vacuum
acquires nonzero conductivity, but only in the direction
of the magnetic field.

In the deconfinement phase at zero magnetic field, the
spectral function is nonzero at w ¼ 0 and has a smooth
peak near w � 2 GeV. Thus quenched SUð2Þ lattice gauge
theory is a conductor above the deconfinement phase tran-
sition [9,15]. Since the shape of the correlator Gijð�Þ is
practically unaffected by the magnetic field, the spectral
function �ijðwÞ and the conductivity �ij do not depend on

the magnetic field.
The electric conductivity �ij as a function of an external

magnetic field is plotted on Fig. 3 for the confinement and
deconfinement phases. In the deconfinement phase the
temperature is T ¼ 350 MeV. The value of the conductiv-
ity was extracted from the value of the spectral function at
w ¼ 0 using (4). In the confinement phase and at zero

magnetic field the conductivity is zero within the error
range. As the magnetic field is turned on, the conductivity
�zz in the direction of the magnetic field grows, while all
other components of �ij remain equal to zero within the

error range. In the deconfinement phase the conductivity is
isotropic and is practically independent of the magnetic
field. One cannot exclude, of course, that there is a weak
anisotropy, which cannot be seen at the small number of
configurations that we have. It should be also noted that in
our simulations the value of conductivity � ¼ 15�
2 MeV at T ¼ 350 MeV> Tc is still much smaller than
the results obtained in Refs. [9,15] in quenched SUð3Þ
lattice gauge theory with light staggered fermions. This
difference is likely to be an artefact of a quenched theory,
since in this case different probes of the confinement-
deconfinement phase transition might give different tran-
sition temperatures. In particular, while in quenched SUð2Þ
lattice gauge theory the Polyakov loop goes to zero at Tc ¼
313:ð3Þ MeV [18], the chiral condensate is not zero above
this temperature [19]. The situation might be similar for the
insulator-conductor transition, which in the quenched case
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FIG. 3 (color online). Electric conductivity of quenched QCD
as a function of external magnetic field at different temperatures.
The points for �zz and �xx at T > Tc coincide within the error
range.
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might be replaced by a soft crossover with much smaller
conductivity at T > Tc.

The transport coefficients typically have rather strong
dependence on lattice parameters. To ensure that the non-
zero conductivity is not a finite-volume artefact, we have
also performed the simulations at different lattice volumes
and lattice spacings (see Table I). The values of conduc-
tivity �zz for different lattice parameters are plotted on
Fig. 4. One can see that as we go to finer and larger lattices,
the conductivity does not change within statistical errors.

We conclude that a strong magnetic field can induce
nonzero electric conductivity of the vacuum of quenched
non-Abelian lattice gauge theory along the direction of the
field, turning it into an anisotropic conductor. This effect
may be called ‘‘electric rupture facilitated by magnetic
field’’; it may originate from the interplay of gluon field
topology and an increase in the quark zero mode density
due to the presence of a magnetic field. It can be interesting
to investigate whether there is some critical value of the
magnetic field at which the conductivity becomes nonzero.
Transitions of this type are known in condensed-matter
physics [20]. In contrast, in the deconfinement phase the
vacuum is an isotropic conductor, and the value of the
conductivity is practically independent of the magnetic
field. Thus, if a strong magnetic field generates an electric
current via the chiral magnetic effect in a CP-odd back-
ground, then the sufficiently strong field would guarantee
that the charge will propagate through the media due to
finite electric conductivity in the both phases.

Finally, let us comment on possible experimental con-
sequences of the phenomenon described above. The ex-
pectation value hjkðxÞjlðyÞi is related to the polarization of
soft photons and to the angular distribution of soft photons
and dilepton pairs emitted in the collision process [15,21].
One can therefore expect an enhancement of production
rate in the direction perpendicular to the reaction plane,
possibly resulting in a negative elliptic flow for soft pho-
tons and dilepton pairs.
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