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We investigate the fundamental dimensional limits to thermodynamic machines. In particular, we show

that it is possible to construct self-contained refrigerators (i.e., not requiring external sources of work)

consisting of only a small number of qubits and/or qutrits. We present three different models, consisting of

two qubits, a qubit and a qutrit with nearest-neighbor interactions, and a single qutrit, respectively. We

then investigate the fundamental limits to their performance; in particular, we show that it is possible to

cool towards absolute zero.
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When Carnot [1] set out to study the physics of steam
engines—and in the process established thermodynamics—
the key to progress was to abstract from real machines to
idealized, ‘‘model independent’’ machines. He found that
although the properties of each machine depend on the
details of its construction, the fundamental limit to their
efficiency is independent of such details. But can physics be
left out completely?Herewe return to physics and ask about
other fundamental limits, specifically, is there a fundamen-
tal limit to their size? And, when they are small, are there
additional constraints on their performance? Is there a com-
plementarity between size and performance? For example,
can smallmachines be constructed that cool arbitrarily close
to absolute zero, or does size impose a fundamental limit?

In the present Letter we approach these questions in the
framework of quantum mechanics which, importantly,
provides a natural and universal notion of ‘‘size,’’ namely,
the dimension of the Hilbert space of the system. It is this
measure of size that we will use here to characterize
thermal machines. Obviously, spatial extent, mass, thermal
capacity, etc., are all possible size measures, each with
their own merits. Our measure has an informational flavor,
motivated by the fundamental connection between infor-
mation and thermodynamics [2,3].

The study of quantum heat engines is, of course, rather
well developed [4–8]. In particular, direct quantum ana-
logues of classical Carnot engines have been extensively
studied [9,10], as well as Otto cycles [11–13]. However,
these papers have in common the fact that they all use an
external source of work and/or control—e.g., precise uni-
tary transformations or macroscopic lasers [14]. In this
Letter, however, we are interested in fundamental limits
on the size of heat engines; hence, we must account for all
degrees of freedom involved; we cannot allow for sources
of external work or control. In other words, we want to
study ‘‘self-contained’’ heat engines, focusing on refriger-
ators. Clearly no refrigerator can work without a supply of
free energy; therefore, all we allow ourselves are two heat
baths at differing temperatures Tr < Th.

Apart from the implications for fundamental physics,
this work is also relevant to other fields. In biology, for
example, if cooling of the active site of a protein can be
achieved then increased catalysis rates may be possible
[15]. It is intriguing to ask whether simple mechanisms,
such as those we describe here, are used by biological
systems. A second field is nanotechnology, where the
benefits from cooling at the atomic scale are clear.
Here we present three models: a refrigerator made of

two qubits, one of a qubit and a qutrit with nearest neighbor
interactions and one of a single qutrit—arguably the small-
est possible. We focus on refrigeration of qubits but discuss
more general objects also. Finally, we prove that there is no
fundamental limit to how close towards absolute zero small
refrigerators can cool.
Model I: Two qubits.—The first model consists of three

qubits, two constitute the refrigerator, and one is the object
to be cooled. It is inspired by algorithmic cooling [16],
particularly by the few qubit version in [17].
Functioning principle.—Consider first two qubits, for

simplicity taken initially to be immersed in the same bath
at room temperature Tr, but later two different baths. Qubit
1 is the object to be cooled, while qubit 2 will eventually
play the role of the ‘‘spiral’’ that takes heat from qubit 1
and dissipates it into the environment.

The free Hamiltonian for the two qubits is H0 ¼
E1�

ð1Þ þ E2�
ð2Þ, where �ðiÞ ¼ j1iih1j is a projector for

qubit i, j0ii are the ground states at zero energy, and j1ii are
the excited states at energies E1 and E2 respectively, where
we take E2 > E1.
At equilibrium each qubit is in a thermal state �i,

�i ¼ rie
�Ei�

ðiÞ=kTr ; (1)

where ri ¼ ð1þ e�Ei=kTrÞ�1 and k is Boltzmann’s con-
stant. Since the qubits do not interact the total thermal
state is simply the direct product state �12 ¼ �1 � �2.
A convenient way to represent the thermal state (1) is in

terms of the probabilities, ri and 1� ri, to find the qubit in
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the eigenstates j0i and j1i respectively, �i ¼ rij0ih0jþ
ð1� riÞj1ih1j.

We will denote by TS
i the steady-state temperature of

each qubit when refrigeration is occurring. Cooling of
qubit 1 means reaching a temperature TS

1 < Tr, corre-

sponding to a larger ground state probability rS1 > r1.
The idea of algorithmic cooling is to increase rS1 by

transferring excitations to the second qubit. Specifically,
the probabilities of the eigenstates j10i and j01i of �12 are
ð1� r1Þr2 and r1ð1� r2Þ. Since we take E2 >E1, it fol-
lows that ð1� r1Þr2 > ð1� r2Þr1; i.e., we are more likely
to be in the state j10i where qubit 1 is excited than in j01i
where it is in the ground state. Suppose now that we apply a
unitary U, which swaps these two states,

j10i $ j01i (2)

while leaving the others unchanged. After the swap we
increase the ground state probability of qubit 1, therefore
cooling it, and decrease the ground state probability of
qubit 2, thus heating it. Since the qubits are in contact
with a thermal bath they will eventually return to the
environmental temperature Tr if we do nothing else.
However, if we keep repeating U, qubits 1 and 2 will reach
steady-state temperatures TS

1 < Tr and TS
2 > Tr.

The procedure above, however, requires external work
to be performed, since the energy of j01i is larger than that
of j10i. This is provided by some external system that
induces the unitary transformation U; for example, in an
NMR experiment this could be done via a sequence of
pulses of an external magnetic field.

The idea behind our model is to replace the external
work by a different source of free energy: Free energy can
be provided whenever a system has access to two thermal
baths at different temperatures. In our model this is accom-
plished by adding a third qubit, in contact with a thermal
bath at a hotter temperature Th > Tr. This qubit plays the
role of the ‘‘engine.’’ Thus our fridge consists in qubits 2
and 3 (the spiral and engine, respectively); qubit 1 is the
object to be cooled.

To enable transitions between different states without an
input of external energy, we take the engine qubit to have
the energy level spacing E3, such that E3 ¼ E2 � E1. With
this condition we now have two degenerate energy eigen-
states j010i and j101i which can be swapped without
requiring work. The interchange

j101i $ j010i (3)

accomplishes on qubits 1 and 2 the transformation (2).
For transitions between j010i and j101i to occur we

introduce an interaction Hamiltonian

Hint ¼ gðj010ih101j þ j101ih010jÞ; (4)

with g the interaction strength. Note that the interaction is
now via a Hamiltonian and not a unitary transformation.
The distinction is important since a unitary necessarily
implies external control—a device to implement the

correct timing, as well as a means of protecting the system
from other external interactions. By using a Hamiltonian
no such external control is required.
Furthermore, this interaction is taken to be weak com-

pared to the free Hamiltonian Ei � g. In this regime the
interaction will not significantly alter the energy eigenval-
ues or eigenvectors of the system (which remain governed
by H0) and hence we can meaningfully talk about the
temperature of the individual qubits, since each will remain
in the standard thermal form (1), with E1 and E2 the same
as in the absence of interaction.
To understand the model first note that the interaction

Hamiltonian can swap without impediment the states j010i
and j101i, since they are degenerate in energy insofar as the
free Hamiltonian is concerned. However, if all qubits were
kept at the same temperature, the system would be at
equilibrium since the probability of the flips (3) is equal.
To drive the transitions in one direction and cool qubit 1, we
place the third qubit in a hotter bath; the probability of j101i
becomes larger than that of j010i, and so we enhance the
probability of the forward flip in (3) and diminish that of the
backward flip. It is this biasing of the interaction which
takes heat from qubit 1 into qubit 2, creating a refrigerator.
Master equation.—The simplest way to model each

qubit being in contact with a thermal bath is to imagine
that with probability density pi per unit time each qubit is
thermalized back to its initial thermal state (1). (Note that
for qubit 3 the bath temperature is now Th.) Mathe-
matically, we model this by the nonunitary evolution � �
pi�t�i Tri�þ ð1� pi�tÞ� in time �t. Here pi quantifies
how well insulated each particle is relative to the bath.
All together this leads to the master equation

@�

@t
¼ �i½H0 þHint; �� þ

X3

i¼1

pið�iTri�� �Þ (5)

(see supplementary information [18]), where H0 ¼
E1�

ð1Þ þ E2�
ð2Þ þ E3�

ð3Þ. Note that in general the addi-
tion of Hint in (5) requires a modification of the dissipative
term if it is to remain consistent [19]. However, we are
interested only in the limit of vanishing g and p such that
g=p ¼ const. In this limit corrections to (5), of order pg,
vanish, and the master equation is consistent.
Steady-state solution.—We will be interested in solving

for the stationary state �S, which satisfies 0 ¼ �i½H0 þ
Hint; �

S� þP
3
i¼1 pið�iTri�S � �SÞ. The solution can easily

be found analytically, but has a complicated dependence on
all the parameters; therefore, it is much more illuminating
to present a numerical analysis.
Figure 1 shows the temperature difference between

qubit 1 (the system to be cooled) and its bath, as a function
of the temperature of the hot bath Th. The solid curve shows
that when Th > Tr we are able to achieve cooling, i.e., T

S
1 <

Tr, and when Th ¼ Tr, that is when we supply no free
energy, the temperature of qubit 1 is unchanged. In the
dashed and dotted curve we show furthermore that if the
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cold qubit is in contact with a colder bath (at temperature
Tc < Tr), thenwe are still able to achieve cooling, i.e.,T

S
1 <

Tc, provided Th is hot enough. Therefore in all instances we
demonstrate that our system acts as a refrigerator.

Until now we have focused solely on the task of cooling
a qubit. One question is whether our fridge is able to cool
more arbitrary objects than just a qubit. To achieve this,
consider qubit 1 now as part of the fridge and use it to cool
other objects. To see that is a valid viewpoint, in Fig. 2 we
display the stationary heat current QS

1 flowing between the

bath and qubit 1. The heat current is defined as QS
1 ¼

TrðH1D1ð�SÞÞ [20], where D1ð�SÞ ¼ p1ð�1 � Tr1�
S �

�SÞ is the dissipator for qubit 1. We see that a positive
current flows whenever the cold qubit is cooled below its
bath temperature (cf. Fig. 1). Thus viewing the environ-
ment as the arbitrary object, we see that we are able to
extract heat from it and therefore cool it. This may also be
seen as independent confirmation that our system works as
a refrigerator.

Parameter dependence and Zeno effects.—A natural
question to ask is how the behavior of the fridge changes
as we vary the parameters pi independently. Indeed, in a
‘‘standard’’ refrigerator we do not want all parts to interact
with the environment equally: the inside of the fridge has to
be well insulated to maintain a low temperature while the
spiral at the back of the fridge has to interact strongly with
the environment to dissipate heat quickly.

Hence, for qubit 2 (the spiral), we expect that as p2

becomes larger the performance of the fridge should
increase (TS

1 should decrease). Furthermore, qubit 3 plays

the role of the engine of the refrigerator, which it achieves
by pumping heat from the hot environment into the system.
We thus expect that the best performance is achieved when

it interacts strongly with its environment, as this allows it to
extract heat at the highest rate.
In Fig. 3 we plot the dependence of TS

1 on p2 and p3. For

small values of p2 and p3 we indeed observe the expected
behavior; however, as we increase them further the per-
formance degrades. The reason is that the quantum Zeno
effect [21] comes into play in the regime of strong coupling
between the qubits and the environment. Thermalization is
as though the environment measures each qubit. As we
increase the rate of thermalization we enter a regime where
the interaction Hint will not have time to work between
successive thermalizations and hence the refrigerator is no
longer able to function.
The dependence of TS

1 on p1 is as expected; coldest

temperatures are achieved in the limit of perfect insulation.
See the supplementary information [18] for further details.
Approaching absolute zero.—An important question is

whether or not there are fundamental limitations on the
temperature to which we are able to cool the cold qubit. We
show that no such limitations exist.
The minimal achievable temperature is limited by two

effects: heat flowing into the fridge due to imperfect in-
sulation, and the actual cooling ability (i.e., the ability to
cool given perfect insulation). It is the second aspect which
we are interested in.
We fix E1, a characteristic of the object to be cooled and

not of the refrigerator and also fix Tr, the environmental
temperature. We increase E3 (therefore E2 also) and Th

such that the ratio E3=Th remains constant and much less
than 1. This results in increasing the ground state proba-
bility of qubit 2, while maintaining a large excited state
probability for qubit 3. Altogether this means that the
interaction (4) becomes ever more biased as we increase
E3. This leads to cooling as close as we want towards
absolute zero, as seen in Fig. 4.
Model II: One qubit, one qutrit.—One drawback of the

previous model is that the interaction Hamiltonian (4) is a
three-body interaction. Here we present a model with only
two-body nearest neighbor interactions.
The model consists of three particles, where one is to be

cooled and two construct the fridge. Particles 1 and 3 are
qubits and particle 2 is a qutrit. The energy levels of each
particle are such that the energy eigenstates j020i and j101i
are degenerate. By introducing an interaction which can
take the population of the latter into the former we can cool
down qubit 1.

FIG. 1 (color online). Cold qubit steady-state temperature dif-
ferenceTS

1 � Tc versus hot bath temperatureTh, for various values

of Tc. Inset: Schematic diagram of energy levels and interaction.

FIG. 2 (color online). Stationary heat current QS
1 of qubit 1

versus hot bath temperature Th. Q
S
1 becomes positive the mo-

ment the cold qubit reaches a temperature colder than its bath.

FIG. 3 (color online). Qubit 1 steady-state temperature TS
1

against insulation parameter p2 (p3) in dashed (dotted) line.
When p2 (p3) vanish we are unable to cool. For large p2 (p3) the
performance of the fridge degrades due to a Zeno effect.
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We do this by introducing two separate interactions
between the particles via the Hamiltonians

Hð12Þ
int ¼ gðj02ih11j þ j11ih02jÞ � 1ð3Þ; (6)

Hð23Þ
int ¼ h1ð1Þ � ðj01ih10j þ j10ih01jÞ: (7)

Neither (6) nor (7) induces transitions between the two
desired states. However, (6) causes transitions between
j020i and j110i and (7) between j110i and j101i.
Therefore, in second order we induce the desired transi-
tion. Finally, we bias this interaction, as previously, by
taking particles 1 and 2 to be in contact with a bath at
temperature Tr and qubit 3 at Th. This model behaves
qualitatively the same as our previous one; details are given
in the supplementary information [18].

The smallest possible fridge.—In the previous model the
qutrit was taken to be in contact with a bath at temperature
Tr. However, we could conceive of situations where each
of its energy eigenstates has a different spatial distribution
and so can be in contact with environments at differing
temperatures. In such situations a smaller refrigerator can
be constructed, by discarding the third qubit—the fridge
now contains only a single qutrit, see Fig. 5. We believe this
is the smallest possible system which may be called a
refrigerator.

Conclusions.—We presented three simple models dem-
onstrating that there is no fundamental difficulty in con-
structing small, self-contained refrigerators. Moreover, we
showed that it is possible to cool towards absolute zero.

There are many interesting questions for the future. The
first is what can be said about the efficiency of small
refrigerators. Is our construction the most efficient, or are
there other Hamiltonians which are better for cooling?

Moreover, it is fundamental to ask whether or not there
exists a complementarity between small dimension and
efficiency—can you only be large and efficient or small
and inefficient? I.e., can a small machine reach the effi-
ciency of an ideal Carnot engine? Our particular models do

not reach this efficiency: both the spiral and the engine
qubits reach stationary temperatures that differ by a finite
(instead of infinitesimal) amount from the temperatures of
their environments, which leads to irreversible heat ex-
changes. However, is there a better model? This is not
clear, since in a Carnot cycle the system transitions through
infinitely many states, not a finite number as we do here.
The question is whether or not this affects the achievable
efficiency of the refrigerator.
Finally, it would be interesting to study other thermal

machines, for example, ones that produce ‘‘work.’’
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